ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdif GIF version

Theorem brdif 3840
Description: The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.)
Assertion
Ref Expression
brdif (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵))

Proof of Theorem brdif
StepHypRef Expression
1 eldif 2955 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
2 df-br 3793 . 2 (𝐴(𝑅𝑆)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑅𝑆))
3 df-br 3793 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
4 df-br 3793 . . . 4 (𝐴𝑆𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑆)
54notbii 604 . . 3 𝐴𝑆𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑆)
63, 5anbi12i 441 . 2 ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑅 ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑆))
71, 2, 63bitr4i 205 1 (𝐴(𝑅𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 101  wb 102  wcel 1409  cdif 2942  cop 3406   class class class wbr 3792
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-dif 2948  df-br 3793
This theorem is referenced by:  fndmdif  5300  brdifun  6164
  Copyright terms: Public domain W3C validator