ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  btwnapz GIF version

Theorem btwnapz 9184
Description: A number between an integer and its successor is apart from any integer. (Contributed by Jim Kingdon, 6-Jan-2023.)
Hypotheses
Ref Expression
btwnapz.a (𝜑𝐴 ∈ ℤ)
btwnapz.b (𝜑𝐵 ∈ ℝ)
btwnapz.c (𝜑𝐶 ∈ ℤ)
btwnapz.ab (𝜑𝐴 < 𝐵)
btwnapz.ba (𝜑𝐵 < (𝐴 + 1))
Assertion
Ref Expression
btwnapz (𝜑𝐵 # 𝐶)

Proof of Theorem btwnapz
StepHypRef Expression
1 btwnapz.c . . . . 5 (𝜑𝐶 ∈ ℤ)
21zred 9176 . . . 4 (𝜑𝐶 ∈ ℝ)
32adantr 274 . . 3 ((𝜑𝐶𝐴) → 𝐶 ∈ ℝ)
4 btwnapz.b . . . 4 (𝜑𝐵 ∈ ℝ)
54adantr 274 . . 3 ((𝜑𝐶𝐴) → 𝐵 ∈ ℝ)
6 btwnapz.a . . . . . 6 (𝜑𝐴 ∈ ℤ)
76zred 9176 . . . . 5 (𝜑𝐴 ∈ ℝ)
87adantr 274 . . . 4 ((𝜑𝐶𝐴) → 𝐴 ∈ ℝ)
9 simpr 109 . . . 4 ((𝜑𝐶𝐴) → 𝐶𝐴)
10 btwnapz.ab . . . . 5 (𝜑𝐴 < 𝐵)
1110adantr 274 . . . 4 ((𝜑𝐶𝐴) → 𝐴 < 𝐵)
123, 8, 5, 9, 11lelttrd 7890 . . 3 ((𝜑𝐶𝐴) → 𝐶 < 𝐵)
133, 5, 12gtapd 8402 . 2 ((𝜑𝐶𝐴) → 𝐵 # 𝐶)
144adantr 274 . . 3 ((𝜑𝐴 < 𝐶) → 𝐵 ∈ ℝ)
152adantr 274 . . 3 ((𝜑𝐴 < 𝐶) → 𝐶 ∈ ℝ)
16 peano2re 7901 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
177, 16syl 14 . . . . 5 (𝜑 → (𝐴 + 1) ∈ ℝ)
1817adantr 274 . . . 4 ((𝜑𝐴 < 𝐶) → (𝐴 + 1) ∈ ℝ)
19 btwnapz.ba . . . . 5 (𝜑𝐵 < (𝐴 + 1))
2019adantr 274 . . . 4 ((𝜑𝐴 < 𝐶) → 𝐵 < (𝐴 + 1))
21 zltp1le 9111 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
226, 1, 21syl2anc 408 . . . . 5 (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
2322biimpa 294 . . . 4 ((𝜑𝐴 < 𝐶) → (𝐴 + 1) ≤ 𝐶)
2414, 18, 15, 20, 23ltletrd 8188 . . 3 ((𝜑𝐴 < 𝐶) → 𝐵 < 𝐶)
2514, 15, 24ltapd 8403 . 2 ((𝜑𝐴 < 𝐶) → 𝐵 # 𝐶)
26 zlelttric 9102 . . 3 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐶𝐴𝐴 < 𝐶))
271, 6, 26syl2anc 408 . 2 (𝜑 → (𝐶𝐴𝐴 < 𝐶))
2813, 25, 27mpjaodan 787 1 (𝜑𝐵 # 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  wcel 1480   class class class wbr 3929  (class class class)co 5774  cr 7622  1c1 7624   + caddc 7626   < clt 7803  cle 7804   # cap 8346  cz 9057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-inn 8724  df-n0 8981  df-z 9058
This theorem is referenced by:  eirraplem  11486
  Copyright terms: Public domain W3C validator