ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casefun GIF version

Theorem casefun 6970
Description: The "case" construction of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casefun.f (𝜑 → Fun 𝐹)
casefun.g (𝜑 → Fun 𝐺)
Assertion
Ref Expression
casefun (𝜑 → Fun case(𝐹, 𝐺))

Proof of Theorem casefun
StepHypRef Expression
1 casefun.f . . . 4 (𝜑 → Fun 𝐹)
2 djulf1o 6943 . . . . . 6 inl:V–1-1-onto→({∅} × V)
3 f1of1 5366 . . . . . 6 (inl:V–1-1-onto→({∅} × V) → inl:V–1-1→({∅} × V))
42, 3ax-mp 5 . . . . 5 inl:V–1-1→({∅} × V)
5 df-f1 5128 . . . . . 6 (inl:V–1-1→({∅} × V) ↔ (inl:V⟶({∅} × V) ∧ Fun inl))
65simprbi 273 . . . . 5 (inl:V–1-1→({∅} × V) → Fun inl)
74, 6mp1i 10 . . . 4 (𝜑 → Fun inl)
8 funco 5163 . . . 4 ((Fun 𝐹 ∧ Fun inl) → Fun (𝐹inl))
91, 7, 8syl2anc 408 . . 3 (𝜑 → Fun (𝐹inl))
10 casefun.g . . . 4 (𝜑 → Fun 𝐺)
11 djurf1o 6944 . . . . . 6 inr:V–1-1-onto→({1o} × V)
12 f1of1 5366 . . . . . 6 (inr:V–1-1-onto→({1o} × V) → inr:V–1-1→({1o} × V))
1311, 12ax-mp 5 . . . . 5 inr:V–1-1→({1o} × V)
14 df-f1 5128 . . . . . 6 (inr:V–1-1→({1o} × V) ↔ (inr:V⟶({1o} × V) ∧ Fun inr))
1514simprbi 273 . . . . 5 (inr:V–1-1→({1o} × V) → Fun inr)
1613, 15mp1i 10 . . . 4 (𝜑 → Fun inr)
17 funco 5163 . . . 4 ((Fun 𝐺 ∧ Fun inr) → Fun (𝐺inr))
1810, 16, 17syl2anc 408 . . 3 (𝜑 → Fun (𝐺inr))
19 dmcoss 4808 . . . . . . 7 dom (𝐹inl) ⊆ dom inl
20 df-rn 4550 . . . . . . 7 ran inl = dom inl
2119, 20sseqtrri 3132 . . . . . 6 dom (𝐹inl) ⊆ ran inl
22 dmcoss 4808 . . . . . . 7 dom (𝐺inr) ⊆ dom inr
23 df-rn 4550 . . . . . . 7 ran inr = dom inr
2422, 23sseqtrri 3132 . . . . . 6 dom (𝐺inr) ⊆ ran inr
25 ss2in 3304 . . . . . 6 ((dom (𝐹inl) ⊆ ran inl ∧ dom (𝐺inr) ⊆ ran inr) → (dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ (ran inl ∩ ran inr))
2621, 24, 25mp2an 422 . . . . 5 (dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ (ran inl ∩ ran inr)
27 rnresv 4998 . . . . . . . . 9 ran (inl ↾ V) = ran inl
2827eqcomi 2143 . . . . . . . 8 ran inl = ran (inl ↾ V)
29 rnresv 4998 . . . . . . . . 9 ran (inr ↾ V) = ran inr
3029eqcomi 2143 . . . . . . . 8 ran inr = ran (inr ↾ V)
3128, 30ineq12i 3275 . . . . . . 7 (ran inl ∩ ran inr) = (ran (inl ↾ V) ∩ ran (inr ↾ V))
32 djuinr 6948 . . . . . . 7 (ran (inl ↾ V) ∩ ran (inr ↾ V)) = ∅
3331, 32eqtri 2160 . . . . . 6 (ran inl ∩ ran inr) = ∅
3433a1i 9 . . . . 5 (𝜑 → (ran inl ∩ ran inr) = ∅)
3526, 34sseqtrid 3147 . . . 4 (𝜑 → (dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ ∅)
36 ss0 3403 . . . 4 ((dom (𝐹inl) ∩ dom (𝐺inr)) ⊆ ∅ → (dom (𝐹inl) ∩ dom (𝐺inr)) = ∅)
3735, 36syl 14 . . 3 (𝜑 → (dom (𝐹inl) ∩ dom (𝐺inr)) = ∅)
38 funun 5167 . . 3 (((Fun (𝐹inl) ∧ Fun (𝐺inr)) ∧ (dom (𝐹inl) ∩ dom (𝐺inr)) = ∅) → Fun ((𝐹inl) ∪ (𝐺inr)))
399, 18, 37, 38syl21anc 1215 . 2 (𝜑 → Fun ((𝐹inl) ∪ (𝐺inr)))
40 df-case 6969 . . 3 case(𝐹, 𝐺) = ((𝐹inl) ∪ (𝐺inr))
4140funeqi 5144 . 2 (Fun case(𝐹, 𝐺) ↔ Fun ((𝐹inl) ∪ (𝐺inr)))
4239, 41sylibr 133 1 (𝜑 → Fun case(𝐹, 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  Vcvv 2686  cun 3069  cin 3070  wss 3071  c0 3363  {csn 3527   × cxp 4537  ccnv 4538  dom cdm 4539  ran crn 4540  cres 4541  ccom 4543  Fun wfun 5117  wf 5119  1-1wf1 5120  1-1-ontowf1o 5122  1oc1o 6306  inlcinl 6930  inrcinr 6931  casecdjucase 6968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-inl 6932  df-inr 6933  df-case 6969
This theorem is referenced by:  casef  6973
  Copyright terms: Public domain W3C validator