ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvralf GIF version

Theorem cbvralf 2544
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.)
Hypotheses
Ref Expression
cbvralf.1 𝑥𝐴
cbvralf.2 𝑦𝐴
cbvralf.3 𝑦𝜑
cbvralf.4 𝑥𝜓
cbvralf.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvralf (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)

Proof of Theorem cbvralf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1437 . . . 4 𝑧(𝑥𝐴𝜑)
2 cbvralf.1 . . . . . 6 𝑥𝐴
32nfcri 2188 . . . . 5 𝑥 𝑧𝐴
4 nfs1v 1831 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
53, 4nfim 1480 . . . 4 𝑥(𝑧𝐴 → [𝑧 / 𝑥]𝜑)
6 eleq1 2116 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
7 sbequ12 1670 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
86, 7imbi12d 227 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝐴 → [𝑧 / 𝑥]𝜑)))
91, 5, 8cbval 1653 . . 3 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑧(𝑧𝐴 → [𝑧 / 𝑥]𝜑))
10 cbvralf.2 . . . . . 6 𝑦𝐴
1110nfcri 2188 . . . . 5 𝑦 𝑧𝐴
12 cbvralf.3 . . . . . 6 𝑦𝜑
1312nfsb 1838 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1411, 13nfim 1480 . . . 4 𝑦(𝑧𝐴 → [𝑧 / 𝑥]𝜑)
15 nfv 1437 . . . 4 𝑧(𝑦𝐴𝜓)
16 eleq1 2116 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
17 sbequ 1737 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
18 cbvralf.4 . . . . . . 7 𝑥𝜓
19 cbvralf.5 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
2018, 19sbie 1690 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜓)
2117, 20syl6bb 189 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
2216, 21imbi12d 227 . . . 4 (𝑧 = 𝑦 → ((𝑧𝐴 → [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐴𝜓)))
2314, 15, 22cbval 1653 . . 3 (∀𝑧(𝑧𝐴 → [𝑧 / 𝑥]𝜑) ↔ ∀𝑦(𝑦𝐴𝜓))
249, 23bitri 177 . 2 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑦(𝑦𝐴𝜓))
25 df-ral 2328 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
26 df-ral 2328 . 2 (∀𝑦𝐴 𝜓 ↔ ∀𝑦(𝑦𝐴𝜓))
2724, 25, 263bitr4i 205 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 102  wal 1257  wnf 1365  wcel 1409  [wsb 1661  wnfc 2181  wral 2323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328
This theorem is referenced by:  cbvral  2546  ffnfvf  5351
  Copyright terms: Public domain W3C validator