ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelsb3 GIF version

Theorem clelsb3 2158
Description: Substitution applied to an atomic wff (class version of elsb3 1868). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
clelsb3 ([𝑥 / 𝑦]𝑦𝐴𝑥𝐴)
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem clelsb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1437 . . 3 𝑦 𝑤𝐴
21sbco2 1855 . 2 ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤𝐴 ↔ [𝑥 / 𝑤]𝑤𝐴)
3 nfv 1437 . . . 4 𝑤 𝑦𝐴
4 eleq1 2116 . . . 4 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
53, 4sbie 1690 . . 3 ([𝑦 / 𝑤]𝑤𝐴𝑦𝐴)
65sbbii 1664 . 2 ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤𝐴 ↔ [𝑥 / 𝑦]𝑦𝐴)
7 nfv 1437 . . 3 𝑤 𝑥𝐴
8 eleq1 2116 . . 3 (𝑤 = 𝑥 → (𝑤𝐴𝑥𝐴))
97, 8sbie 1690 . 2 ([𝑥 / 𝑤]𝑤𝐴𝑥𝐴)
102, 6, 93bitr3i 203 1 ([𝑥 / 𝑦]𝑦𝐴𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wb 102  wcel 1409  [wsb 1661
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-cleq 2049  df-clel 2052
This theorem is referenced by:  hblem  2161  nfraldya  2375  nfrexdya  2376  cbvreu  2548  sbcel1v  2848  rmo3  2877  setindel  4291  elirr  4294  en2lp  4306  zfregfr  4326  tfi  4333  bdcriota  10390
  Copyright terms: Public domain W3C validator