ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsng GIF version

Theorem cnvsng 5024
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.)
Assertion
Ref Expression
cnvsng ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})

Proof of Theorem cnvsng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3705 . . . . 5 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
21sneqd 3540 . . . 4 (𝑥 = 𝐴 → {⟨𝑥, 𝑦⟩} = {⟨𝐴, 𝑦⟩})
32cnveqd 4715 . . 3 (𝑥 = 𝐴{⟨𝑥, 𝑦⟩} = {⟨𝐴, 𝑦⟩})
4 opeq2 3706 . . . 4 (𝑥 = 𝐴 → ⟨𝑦, 𝑥⟩ = ⟨𝑦, 𝐴⟩)
54sneqd 3540 . . 3 (𝑥 = 𝐴 → {⟨𝑦, 𝑥⟩} = {⟨𝑦, 𝐴⟩})
63, 5eqeq12d 2154 . 2 (𝑥 = 𝐴 → ({⟨𝑥, 𝑦⟩} = {⟨𝑦, 𝑥⟩} ↔ {⟨𝐴, 𝑦⟩} = {⟨𝑦, 𝐴⟩}))
7 opeq2 3706 . . . . 5 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
87sneqd 3540 . . . 4 (𝑦 = 𝐵 → {⟨𝐴, 𝑦⟩} = {⟨𝐴, 𝐵⟩})
98cnveqd 4715 . . 3 (𝑦 = 𝐵{⟨𝐴, 𝑦⟩} = {⟨𝐴, 𝐵⟩})
10 opeq1 3705 . . . 4 (𝑦 = 𝐵 → ⟨𝑦, 𝐴⟩ = ⟨𝐵, 𝐴⟩)
1110sneqd 3540 . . 3 (𝑦 = 𝐵 → {⟨𝑦, 𝐴⟩} = {⟨𝐵, 𝐴⟩})
129, 11eqeq12d 2154 . 2 (𝑦 = 𝐵 → ({⟨𝐴, 𝑦⟩} = {⟨𝑦, 𝐴⟩} ↔ {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}))
13 vex 2689 . . 3 𝑥 ∈ V
14 vex 2689 . . 3 𝑦 ∈ V
1513, 14cnvsn 5021 . 2 {⟨𝑥, 𝑦⟩} = {⟨𝑦, 𝑥⟩}
166, 12, 15vtocl2g 2750 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  {csn 3527  cop 3530  ccnv 4538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547
This theorem is referenced by:  opswapg  5025  funsng  5169
  Copyright terms: Public domain W3C validator