ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvssrndm GIF version

Theorem cnvssrndm 4866
Description: The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
cnvssrndm 𝐴 ⊆ (ran 𝐴 × dom 𝐴)

Proof of Theorem cnvssrndm
StepHypRef Expression
1 relcnv 4727 . . 3 Rel 𝐴
2 relssdmrn 4865 . . 3 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
31, 2ax-mp 7 . 2 𝐴 ⊆ (dom 𝐴 × ran 𝐴)
4 df-rn 4376 . . 3 ran 𝐴 = dom 𝐴
5 dfdm4 4549 . . 3 dom 𝐴 = ran 𝐴
64, 5xpeq12i 4387 . 2 (ran 𝐴 × dom 𝐴) = (dom 𝐴 × ran 𝐴)
73, 6sseqtr4i 3033 1 𝐴 ⊆ (ran 𝐴 × dom 𝐴)
Colors of variables: wff set class
Syntax hints:  wss 2974   × cxp 4363  ccnv 4364  dom cdm 4365  ran crn 4366  Rel wrel 4370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-br 3788  df-opab 3842  df-xp 4371  df-rel 4372  df-cnv 4373  df-dm 4375  df-rn 4376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator