![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decbin2 | GIF version |
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decbin.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
decbin2 | ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2t1e2 8329 | . . 3 ⊢ (2 · 1) = 2 | |
2 | 1 | oveq2i 5576 | . 2 ⊢ ((2 · (2 · 𝐴)) + (2 · 1)) = ((2 · (2 · 𝐴)) + 2) |
3 | 2cn 8254 | . . 3 ⊢ 2 ∈ ℂ | |
4 | decbin.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
5 | 4 | nn0cni 8444 | . . . 4 ⊢ 𝐴 ∈ ℂ |
6 | 3, 5 | mulcli 7263 | . . 3 ⊢ (2 · 𝐴) ∈ ℂ |
7 | ax-1cn 7208 | . . 3 ⊢ 1 ∈ ℂ | |
8 | 3, 6, 7 | adddii 7268 | . 2 ⊢ (2 · ((2 · 𝐴) + 1)) = ((2 · (2 · 𝐴)) + (2 · 1)) |
9 | 4 | decbin0 8774 | . . 3 ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
10 | 9 | oveq1i 5575 | . 2 ⊢ ((4 · 𝐴) + 2) = ((2 · (2 · 𝐴)) + 2) |
11 | 2, 8, 10 | 3eqtr4ri 2114 | 1 ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ∈ wcel 1434 (class class class)co 5565 1c1 7121 + caddc 7123 · cmul 7125 2c2 8233 4c4 8235 ℕ0cn0 8432 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-cnex 7206 ax-resscn 7207 ax-1cn 7208 ax-1re 7209 ax-icn 7210 ax-addcl 7211 ax-addrcl 7212 ax-mulcl 7213 ax-mulcom 7216 ax-addass 7217 ax-mulass 7218 ax-distr 7219 ax-1rid 7222 ax-rnegex 7224 ax-cnre 7226 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2613 df-un 2987 df-in 2989 df-ss 2996 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-br 3807 df-iota 4918 df-fv 4961 df-ov 5568 df-inn 8184 df-2 8242 df-3 8243 df-4 8244 df-n0 8433 |
This theorem is referenced by: decbin3 8776 |
Copyright terms: Public domain | W3C validator |