ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decbin2 GIF version

Theorem decbin2 9325
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
decbin.1 𝐴 ∈ ℕ0
Assertion
Ref Expression
decbin2 ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1))

Proof of Theorem decbin2
StepHypRef Expression
1 2t1e2 8876 . . 3 (2 · 1) = 2
21oveq2i 5785 . 2 ((2 · (2 · 𝐴)) + (2 · 1)) = ((2 · (2 · 𝐴)) + 2)
3 2cn 8794 . . 3 2 ∈ ℂ
4 decbin.1 . . . . 5 𝐴 ∈ ℕ0
54nn0cni 8992 . . . 4 𝐴 ∈ ℂ
63, 5mulcli 7774 . . 3 (2 · 𝐴) ∈ ℂ
7 ax-1cn 7716 . . 3 1 ∈ ℂ
83, 6, 7adddii 7779 . 2 (2 · ((2 · 𝐴) + 1)) = ((2 · (2 · 𝐴)) + (2 · 1))
94decbin0 9324 . . 3 (4 · 𝐴) = (2 · (2 · 𝐴))
109oveq1i 5784 . 2 ((4 · 𝐴) + 2) = ((2 · (2 · 𝐴)) + 2)
112, 8, 103eqtr4ri 2171 1 ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1))
Colors of variables: wff set class
Syntax hints:   = wceq 1331  wcel 1480  (class class class)co 5774  1c1 7624   + caddc 7626   · cmul 7628  2c2 8774  4c4 8776  0cn0 8980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-1rid 7730  ax-rnegex 7732  ax-cnre 7734
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777  df-inn 8724  df-2 8782  df-3 8783  df-4 8784  df-n0 8981
This theorem is referenced by:  decbin3  9326
  Copyright terms: Public domain W3C validator