 Home Intuitionistic Logic ExplorerTheorem List (p. 94 of 105) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9301-9400   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremmodqabs 9301 Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑 → 0 < 𝐵)    &   (𝜑𝐶 ∈ ℚ)    &   (𝜑𝐵𝐶)       (𝜑 → ((𝐴 mod 𝐵) mod 𝐶) = (𝐴 mod 𝐵))

Theoremmodqabs2 9302 Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) mod 𝐵) = (𝐴 mod 𝐵))

Theoremmodqcyc 9303 The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))

Theoremmodqcyc2 9304 The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵))

Theoremmodqadd1 9305 Addition property of the modulo operation. (Contributed by Jim Kingdon, 22-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑𝐶 ∈ ℚ)    &   (𝜑𝐷 ∈ ℚ)    &   (𝜑 → 0 < 𝐷)    &   (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))       (𝜑 → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))

Theoremmodqaddabs 9306 Absorption law for modulo. (Contributed by Jim Kingdon, 22-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶))

Theoremmodqaddmod 9307 The sum of a number modulo a modulus and another number equals the sum of the two numbers modulo the same modulus. (Contributed by Jim Kingdon, 23-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) + 𝐵) mod 𝑀) = ((𝐴 + 𝐵) mod 𝑀))

Theoremmulqaddmodid 9308 The sum of a positive rational number less than an upper bound and the product of an integer and the upper bound is the positive rational number modulo the upper bound. (Contributed by Jim Kingdon, 23-Oct-2021.)
(((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)

Theoremmulp1mod1 9309 The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1)

Theoremmodqmuladd 9310* Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑𝐵 ∈ (0[,)𝑀))    &   (𝜑𝑀 ∈ ℚ)    &   (𝜑 → 0 < 𝑀)       (𝜑 → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))

Theoremmodqmuladdim 9311* Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))

Theoremmodqmuladdnn0 9312* Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))

Theoremqnegmod 9313 The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁𝐴) mod 𝑁))

Theoremm1modnnsub1 9314 Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.)
(𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1))

Theoremm1modge3gt1 9315 Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.)
(𝑀 ∈ (ℤ‘3) → 1 < (-1 mod 𝑀))

Theoremaddmodid 9316 The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.)
((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴)

Theoremaddmodidr 9317 The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by AV, 19-Mar-2021.)
((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝐴 + 𝑀) mod 𝑀) = 𝐴)

Theoremmodqadd2mod 9318 The sum of a number modulo a modulus and another number equals the sum of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))

Theoremmodqm1p1mod0 9319 If a number modulo a modulus equals the modulus decreased by 1, the first number increased by 1 modulo the modulus equals 0. (Contributed by Jim Kingdon, 24-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0))

Theoremmodqltm1p1mod 9320 If a number modulo a modulus is less than the modulus decreased by 1, the first number increased by 1 modulo the modulus equals the first number modulo the modulus, increased by 1. (Contributed by Jim Kingdon, 24-Oct-2021.)
(((𝐴 ∈ ℚ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1))

Theoremmodqmul1 9321 Multiplication property of the modulo operation. Note that the multiplier 𝐶 must be an integer. (Contributed by Jim Kingdon, 24-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐷 ∈ ℚ)    &   (𝜑 → 0 < 𝐷)    &   (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))       (𝜑 → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))

Theoremmodqmul12d 9322 Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Jim Kingdon, 24-Oct-2021.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐷 ∈ ℤ)    &   (𝜑𝐸 ∈ ℚ)    &   (𝜑 → 0 < 𝐸)    &   (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))    &   (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))       (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))

Theoremmodqnegd 9323 Negation property of the modulo operation. (Contributed by Jim Kingdon, 24-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑𝐶 ∈ ℚ)    &   (𝜑 → 0 < 𝐶)    &   (𝜑 → (𝐴 mod 𝐶) = (𝐵 mod 𝐶))       (𝜑 → (-𝐴 mod 𝐶) = (-𝐵 mod 𝐶))

Theoremmodqadd12d 9324 Additive property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑𝐶 ∈ ℚ)    &   (𝜑𝐷 ∈ ℚ)    &   (𝜑𝐸 ∈ ℚ)    &   (𝜑 → 0 < 𝐸)    &   (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))    &   (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))       (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸))

Theoremmodqsub12d 9325 Subtraction property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑𝐶 ∈ ℚ)    &   (𝜑𝐷 ∈ ℚ)    &   (𝜑𝐸 ∈ ℚ)    &   (𝜑 → 0 < 𝐸)    &   (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))    &   (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))       (𝜑 → ((𝐴𝐶) mod 𝐸) = ((𝐵𝐷) mod 𝐸))

Theoremmodqsubmod 9326 The difference of a number modulo a modulus and another number equals the difference of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) − 𝐵) mod 𝑀) = ((𝐴𝐵) mod 𝑀))

Theoremmodqsubmodmod 9327 The difference of a number modulo a modulus and another number modulo the same modulus equals the difference of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) − (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴𝐵) mod 𝑀))

Theoremq2txmodxeq0 9328 Two times a positive number modulo the number is zero. (Contributed by Jim Kingdon, 25-Oct-2021.)
((𝑋 ∈ ℚ ∧ 0 < 𝑋) → ((2 · 𝑋) mod 𝑋) = 0)

Theoremq2submod 9329 If a number is between a modulus and twice the modulus, the first number modulo the modulus equals the first number minus the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴𝐵))

Theoremmodifeq2int 9330 If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))

Theoremmodaddmodup 9331 The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀)))

Theoremmodaddmodlo 9332 The sum of an integer modulo a positive integer and another integer equals the sum of the two integers modulo the positive integer if the other integer is in the lower part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ (0..^(𝑀 − (𝐴 mod 𝑀))) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐵 + 𝐴) mod 𝑀)))

Theoremmodqmulmod 9333 The product of a rational number modulo a modulus and an integer equals the product of the rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) · 𝐵) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀))

Theoremmodqmulmodr 9334 The product of an integer and a rational number modulo a modulus equals the product of the integer and the rational number modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 · (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀))

Theoremmodqaddmulmod 9335 The sum of a rational number and the product of a second rational number modulo a modulus and an integer equals the sum of the rational number and the product of the other rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))

Theoremmodqdi 9336 Distribute multiplication over a modulo operation. (Contributed by Jim Kingdon, 26-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶)))

Theoremmodqsubdir 9337 Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))))

Theoremmodqeqmodmin 9338 A rational number equals the difference of the rational number and a modulus modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 mod 𝑀) = ((𝐴𝑀) mod 𝑀))

Theoremmodfzo0difsn 9339* For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.)
((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))

Theoremmodsumfzodifsn 9340 The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.)
((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))

Theoremmodlteq 9341 Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021.)
((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐼 mod 𝑁) = (𝐽 mod 𝑁) ↔ 𝐼 = 𝐽))

Theoremaddmodlteq 9342 Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. (Contributed by AV, 20-Mar-2021.)
((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽))

Theoremfrec2uz0d 9343* The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers 0 or 1 for the upper integers ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)       (𝜑 → (𝐺‘∅) = 𝐶)

Theoremfrec2uzzd 9344* The value of 𝐺 (see frec2uz0d 9343) is an integer. (Contributed by Jim Kingdon, 16-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝐴 ∈ ω)       (𝜑 → (𝐺𝐴) ∈ ℤ)

Theoremfrec2uzsucd 9345* The value of 𝐺 (see frec2uz0d 9343) at a successor. (Contributed by Jim Kingdon, 16-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝐴 ∈ ω)       (𝜑 → (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1))

Theoremfrec2uzuzd 9346* The value 𝐺 (see frec2uz0d 9343) at an ordinal natural number is in the upper integers. (Contributed by Jim Kingdon, 16-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝐴 ∈ ω)       (𝜑 → (𝐺𝐴) ∈ (ℤ𝐶))

Theoremfrec2uzltd 9347* Less-than relation for 𝐺 (see frec2uz0d 9343). (Contributed by Jim Kingdon, 16-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝐴 ∈ ω)    &   (𝜑𝐵 ∈ ω)       (𝜑 → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))

Theoremfrec2uzlt2d 9348* The mapping 𝐺 (see frec2uz0d 9343) preserves order. (Contributed by Jim Kingdon, 16-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝐴 ∈ ω)    &   (𝜑𝐵 ∈ ω)       (𝜑 → (𝐴𝐵 ↔ (𝐺𝐴) < (𝐺𝐵)))

Theoremfrec2uzrand 9349* Range of 𝐺 (see frec2uz0d 9343). (Contributed by Jim Kingdon, 17-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)       (𝜑 → ran 𝐺 = (ℤ𝐶))

Theoremfrec2uzf1od 9350* 𝐺 (see frec2uz0d 9343) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)       (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))

Theoremfrec2uzisod 9351* 𝐺 (see frec2uz0d 9343) is an isomorphism from natural ordinals to upper integers. (Contributed by Jim Kingdon, 17-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)       (𝜑𝐺 Isom E , < (ω, (ℤ𝐶)))

Theoremfrecuzrdgrrn 9352* The function 𝑅 (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of 𝑆. (Contributed by Jim Kingdon, 27-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)       ((𝜑𝐷 ∈ ω) → (𝑅𝐷) ∈ ((ℤ𝐶) × 𝑆))

Theoremfrec2uzrdg 9353* A helper lemma for the value of a recursive definition generator on upper integers (typically either or 0) with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. This lemma shows that evaluating 𝑅 at an element of ω gives an ordered pair whose first element is the index (translated from ω to (ℤ𝐶)). See comment in frec2uz0d 9343 which describes 𝐺 and the index translation. (Contributed by Jim Kingdon, 24-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝐵 ∈ ω)       (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)

Theoremfrecuzrdgrom 9354* The function 𝑅 (used in the definition of the recursive definition generator on upper integers) is a function defined for all natural numbers. (Contributed by Jim Kingdon, 26-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)       (𝜑𝑅 Fn ω)

Theoremfrecuzrdglem 9355* A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝐵 ∈ (ℤ𝐶))       (𝜑 → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ ran 𝑅)

Theoremfrecuzrdgfn 9356* The recursive definition generator on upper integers is a function. See comment in frec2uz0d 9343 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 26-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝑇 = ran 𝑅)       (𝜑𝑇 Fn (ℤ𝐶))

Theoremfrecuzrdgcl 9357* Closure law for the recursive definition generator on upper integers. See comment in frec2uz0d 9343 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 31-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝑇 = ran 𝑅)       ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇𝐵) ∈ 𝑆)

Theoremfrecuzrdg0 9358* Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 9343 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 27-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝑇 = ran 𝑅)       (𝜑 → (𝑇𝐶) = 𝐴)

Theoremfrecuzrdgsuc 9359* Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 9343 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 28-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝑇 = ran 𝑅)       ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇‘(𝐵 + 1)) = (𝐵𝐹(𝑇𝐵)))

Theoremuzenom 9360 An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → 𝑍 ≈ ω)

Theoremfrecfzennn 9361 The cardinality of a finite set of sequential integers. (See frec2uz0d 9343 for a description of the hypothesis.) (Contributed by Jim Kingdon, 18-May-2020.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (𝐺𝑁))

Theoremfrecfzen2 9362 The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Jim Kingdon, 18-May-2020.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))

Theoremfrechashgf1o 9363 𝐺 maps ω one-to-one onto 0. (Contributed by Jim Kingdon, 19-May-2020.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       𝐺:ω–1-1-onto→ℕ0

Theoremfzfig 9364 A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ Fin)

Theoremfzfigd 9365 Deduction form of fzfig 9364. (Contributed by Jim Kingdon, 21-May-2020.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝑀...𝑁) ∈ Fin)

Theoremfzofig 9366 Half-open integer sets are finite. (Contributed by Jim Kingdon, 21-May-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin)

Theoremnn0ennn 9367 The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.)
0 ≈ ℕ

Theoremnnenom 9368 The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
ℕ ≈ ω

3.6.4  The infinite sequence builder "seq"

Syntaxcseq 9369 Extend class notation with recursive sequence builder.
class seq𝑀( + , 𝐹, 𝑆)

Definitiondf-iseq 9370* Define a general-purpose operation that builds a recursive sequence (i.e. a function on the positive integers or some other upper integer set) whose value at an index is a function of its previous value and the value of an input sequence at that index. This definition is complicated, but fortunately it is not intended to be used directly. Instead, the only purpose of this definition is to provide us with an object that has the properties expressed by iseq1 9380 and iseqp1 9383. Typically, those are the main theorems that would be used in practice.

The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation +, an input sequence 𝐹 with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence seq1( + , 𝐹, ℚ) with values 1, 3/2, 7/4, 15/8,.., so that (seq1( + , 𝐹, ℚ)‘1) = 1, (seq1( + , 𝐹, ℚ)‘2) = 3/2, etc. In other words, seq𝑀( + , 𝐹, ℚ) transforms a sequence 𝐹 into an infinite series.

Internally, the frec function generates as its values a set of ordered pairs starting at 𝑀, (𝐹𝑀)⟩, with the first member of each pair incremented by one in each successive value. So, the range of frec is exactly the sequence we want, and we just extract the range and throw away the domain.

(Contributed by Jim Kingdon, 29-May-2020.)

seq𝑀( + , 𝐹, 𝑆) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)

Theoremiseqex 9371 Existence of the sequence builder operation. (Contributed by Jim Kingdon, 20-Aug-2021.)
seq𝑀( + , 𝐹, 𝑆) ∈ V

Theoremiseqeq1 9372 Equality theorem for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.)
(𝑀 = 𝑁 → seq𝑀( + , 𝐹, 𝑆) = seq𝑁( + , 𝐹, 𝑆))

Theoremiseqeq2 9373 Equality theorem for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.)
( + = 𝑄 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀(𝑄, 𝐹, 𝑆))

Theoremiseqeq3 9374 Equality theorem for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.)
(𝐹 = 𝐺 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐺, 𝑆))

Theoremiseqeq4 9375 Equality theorem for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.)
(𝑆 = 𝑇 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐹, 𝑇))

Theoremnfiseq 9376 Hypothesis builder for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.)
𝑥𝑀    &   𝑥 +    &   𝑥𝐹    &   𝑥𝑆       𝑥seq𝑀( + , 𝐹, 𝑆)

Theoremiseqovex 9377* Closure of a function used in proving sequence builder theorems. This can be thought of as a lemma for the small number of sequence builder theorems which need it. (Contributed by Jim Kingdon, 31-May-2020.)
((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)

Theoremiseqval 9378* Value of the sequence builder function. (Contributed by Jim Kingdon, 30-May-2020.)
𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → seq𝑀( + , 𝐹, 𝑆) = ran 𝑅)

Theoremiseqfn 9379* The sequence builder function is a function. (Contributed by Jim Kingdon, 30-May-2020.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → seq𝑀( + , 𝐹, 𝑆) Fn (ℤ𝑀))

Theoremiseq1 9380* Value of the sequence builder function at its initial value. (Contributed by Jim Kingdon, 31-May-2020.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐹𝑀))

Theoremiseqcl 9381* Closure properties of the recursive sequence builder. (Contributed by Jim Kingdon, 1-Jun-2020.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) ∈ 𝑆)

Theoremiseqf 9382* Range of the recursive sequence builder. (Contributed by Jim Kingdon, 23-Jul-2021.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑆𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑥𝑍) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → seq𝑀( + , 𝐹, 𝑆):𝑍𝑆)

Theoremiseqp1 9383* Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 31-May-2020.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁) + (𝐹‘(𝑁 + 1))))

Theoremiseqss 9384* Specifying a larger universe for seq. As long as 𝐹 and + are closed over 𝑆, then any set which contains 𝑆 can be used as the last argument to seq. This theorem does not allow 𝑇 to be a proper class, however. It also currently requires that + be closed over 𝑇 (as well as 𝑆). (Contributed by Jim Kingdon, 18-Aug-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑇𝑉)    &   (𝜑𝑆𝑇)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)       (𝜑 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐹, 𝑇))

Theoremiseqm1 9385* Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝑁 − 1)) + (𝐹𝑁)))

Theoremiseqfveq2 9386* Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
(𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (𝐺𝐾))    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   (𝜑𝑁 ∈ (ℤ𝐾))    &   ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁))

Theoremiseqfeq2 9387* Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
(𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (𝐺𝐾))    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = (𝐺𝑘))       (𝜑 → (seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ𝐾)) = seq𝐾( + , 𝐺, 𝑆))

Theoremiseqfveq 9388* Equality of sequences. (Contributed by Jim Kingdon, 4-Jun-2020.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺𝑘))    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝑀( + , 𝐺, 𝑆)‘𝑁))

Theoremiseqfeq 9389* Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐺𝑘))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐺, 𝑆))

Theoremiseqshft2 9390* Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐾 ∈ ℤ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))

Theoremiserf 9391* An infinite series of complex terms is a function from to . (Contributed by Jim Kingdon, 15-Aug-2021.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)       (𝜑 → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℂ)

Theoremiserfre 9392* An infinite series of real numbers is a function from to . (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)       (𝜑 → seq𝑀( + , 𝐹, ℝ):𝑍⟶ℝ)

Theoremmonoord 9393* Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))       (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))

Theoremmonoord2 9394* Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))       (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))

Theoremisermono 9395* The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by Jim Kingdon, 15-Aug-2021.)
(𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑𝑁 ∈ (ℤ𝐾))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℝ)    &   ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹𝑥))       (𝜑 → (seq𝑀( + , 𝐹, ℝ)‘𝐾) ≤ (seq𝑀( + , 𝐹, ℝ)‘𝑁))

Theoremiseqsplit 9396* Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))    &   (𝜑𝑆𝑉)    &   (𝜑𝑀 ∈ (ℤ𝐾))    &   ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐹𝑥) ∈ 𝑆)       (𝜑 → (seq𝐾( + , 𝐹, 𝑆)‘𝑁) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁)))

Theoremiseq1p 9397* Removing the first term from a sequence. (Contributed by Jim Kingdon, 16-Aug-2021.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))    &   (𝜑𝑆𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = ((𝐹𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁)))

Theoremiseqcaopr3 9398* Lemma for iseqcaopr2 . (Contributed by Jim Kingdon, 16-Aug-2021.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))    &   ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1)))))    &   (𝜑𝑆𝑉)       (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑁)))

Theoremiseqcaopr2 9399* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)    &   ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))    &   (𝜑𝑆𝑉)       (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑁)))

Theoremiseqcaopr 9400* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Jim Kingdon, 17-Aug-2021.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))    &   (𝜑𝑆𝑉)       (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁) + (seq𝑀( + , 𝐺, 𝑆)‘𝑁)))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10483
 Copyright terms: Public domain < Previous  Next >