ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o2 GIF version

Theorem dff1o2 5158
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dff1o2
StepHypRef Expression
1 df-f1o 4936 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
2 df-f1 4934 . . . 4 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
3 df-fo 4935 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
42, 3anbi12i 441 . . 3 ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ ((𝐹:𝐴𝐵 ∧ Fun 𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))
5 anass 387 . . . 4 (((𝐹:𝐴𝐵 ∧ Fun 𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹:𝐴𝐵 ∧ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))))
6 3anan12 908 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)))
76anbi1i 439 . . . . 5 (((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ∧ 𝐹:𝐴𝐵) ↔ ((Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ 𝐹:𝐴𝐵))
8 eqimss 3024 . . . . . . . 8 (ran 𝐹 = 𝐵 → ran 𝐹𝐵)
9 df-f 4933 . . . . . . . . 9 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
109biimpri 128 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → 𝐹:𝐴𝐵)
118, 10sylan2 274 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴𝐵)
12113adant2 934 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴𝐵)
1312pm4.71i 377 . . . . 5 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ∧ 𝐹:𝐴𝐵))
14 ancom 257 . . . . 5 ((𝐹:𝐴𝐵 ∧ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) ↔ ((Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ∧ 𝐹:𝐴𝐵))
157, 13, 143bitr4ri 206 . . . 4 ((𝐹:𝐴𝐵 ∧ (Fun 𝐹 ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))) ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
165, 15bitri 177 . . 3 (((𝐹:𝐴𝐵 ∧ Fun 𝐹) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
174, 16bitri 177 . 2 ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
181, 17bitri 177 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102  w3a 896   = wceq 1259  wss 2944  ccnv 4371  ran crn 4373  Fun wfun 4923   Fn wfn 4924  wf 4925  1-1wf1 4926  ontowfo 4927  1-1-ontowf1o 4928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-11 1413  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-in 2951  df-ss 2958  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936
This theorem is referenced by:  dff1o3  5159  dff1o4  5161  f1orn  5163  dif1en  6367
  Copyright terms: Public domain W3C validator