![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfsn2 | GIF version |
Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
Ref | Expression |
---|---|
dfsn2 | ⊢ {𝐴} = {𝐴, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 3413 | . 2 ⊢ {𝐴, 𝐴} = ({𝐴} ∪ {𝐴}) | |
2 | unidm 3116 | . 2 ⊢ ({𝐴} ∪ {𝐴}) = {𝐴} | |
3 | 1, 2 | eqtr2i 2103 | 1 ⊢ {𝐴} = {𝐴, 𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ∪ cun 2972 {csn 3406 {cpr 3407 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-un 2978 df-pr 3413 |
This theorem is referenced by: nfsn 3460 tpidm12 3499 tpidm 3502 preqsn 3575 opid 3596 unisn 3625 intsng 3678 opeqsn 4015 relop 4514 funopg 4964 enpr1g 6345 sizeprg 9832 bj-snexg 10861 |
Copyright terms: Public domain | W3C validator |