ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmptclx GIF version

Theorem dvmptclx 12854
Description: Closure lemma for dvmptmulx 12856 and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptadd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptadd.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptadd.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptclx.ss (𝜑𝑋𝑆)
Assertion
Ref Expression
dvmptclx ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem dvmptclx
StepHypRef Expression
1 dvmptadd.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnex 7749 . . . . . . 7 ℂ ∈ V
32a1i 9 . . . . . 6 (𝜑 → ℂ ∈ V)
41elexd 2699 . . . . . 6 (𝜑𝑆 ∈ V)
5 dvmptadd.a . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
65fmpttd 5575 . . . . . 6 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
7 dvmptclx.ss . . . . . 6 (𝜑𝑋𝑆)
8 elpm2r 6560 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ V) ∧ ((𝑥𝑋𝐴):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
93, 4, 6, 7, 8syl22anc 1217 . . . . 5 (𝜑 → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
10 dvfgg 12831 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝑥𝑋𝐴)):dom (𝑆 D (𝑥𝑋𝐴))⟶ℂ)
111, 9, 10syl2anc 408 . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐴)):dom (𝑆 D (𝑥𝑋𝐴))⟶ℂ)
12 dvmptadd.da . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
1312dmeqd 4741 . . . . . 6 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
14 dvmptadd.b . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵𝑉)
1514ralrimiva 2505 . . . . . . 7 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
16 dmmptg 5036 . . . . . . 7 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
1715, 16syl 14 . . . . . 6 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
1813, 17eqtrd 2172 . . . . 5 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
1918feq2d 5260 . . . 4 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)):dom (𝑆 D (𝑥𝑋𝐴))⟶ℂ ↔ (𝑆 D (𝑥𝑋𝐴)):𝑋⟶ℂ))
2011, 19mpbid 146 . . 3 (𝜑 → (𝑆 D (𝑥𝑋𝐴)):𝑋⟶ℂ)
2112feq1d 5259 . . 3 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)):𝑋⟶ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ))
2220, 21mpbid 146 . 2 (𝜑 → (𝑥𝑋𝐵):𝑋⟶ℂ)
2322fvmptelrn 5573 1 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  Vcvv 2686  wss 3071  {cpr 3528  cmpt 3989  dom cdm 4539  wf 5119  (class class class)co 5774  pm cpm 6543  cc 7623  cr 7624   D cdv 12798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7716  ax-resscn 7717  ax-1cn 7718  ax-1re 7719  ax-icn 7720  ax-addcl 7721  ax-addrcl 7722  ax-mulcl 7723  ax-mulrcl 7724  ax-addcom 7725  ax-mulcom 7726  ax-addass 7727  ax-mulass 7728  ax-distr 7729  ax-i2m1 7730  ax-0lt1 7731  ax-1rid 7732  ax-0id 7733  ax-rnegex 7734  ax-precex 7735  ax-cnre 7736  ax-pre-ltirr 7737  ax-pre-ltwlin 7738  ax-pre-lttrn 7739  ax-pre-apti 7740  ax-pre-ltadd 7741  ax-pre-mulgt0 7742  ax-pre-mulext 7743  ax-arch 7744  ax-caucvg 7745
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7807  df-mnf 7808  df-xr 7809  df-ltxr 7810  df-le 7811  df-sub 7940  df-neg 7941  df-reap 8342  df-ap 8349  df-div 8438  df-inn 8726  df-2 8784  df-3 8785  df-4 8786  df-n0 8983  df-z 9060  df-uz 9332  df-q 9417  df-rp 9447  df-xneg 9564  df-xadd 9565  df-seqfrec 10224  df-exp 10298  df-cj 10619  df-re 10620  df-im 10621  df-rsqrt 10775  df-abs 10776  df-rest 12127  df-topgen 12146  df-psmet 12161  df-xmet 12162  df-met 12163  df-bl 12164  df-mopn 12165  df-top 12170  df-topon 12183  df-bases 12215  df-ntr 12270  df-limced 12799  df-dvap 12800
This theorem is referenced by:  dvmptmulx  12856  dvmptcmulcn  12857  dvmptnegcn  12858  dvmptsubcn  12859
  Copyright terms: Public domain W3C validator