Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  el2oss1o GIF version

Theorem el2oss1o 13188
Description: Being an element of ordinal two implies being a subset of ordinal one. The converse is equivalent to excluded middle by ss1oel2o 13189. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
el2oss1o (𝐴 ∈ 2o𝐴 ⊆ 1o)

Proof of Theorem el2oss1o
StepHypRef Expression
1 elpri 3550 . . 3 (𝐴 ∈ {∅, 1o} → (𝐴 = ∅ ∨ 𝐴 = 1o))
2 df2o3 6327 . . 3 2o = {∅, 1o}
31, 2eleq2s 2234 . 2 (𝐴 ∈ 2o → (𝐴 = ∅ ∨ 𝐴 = 1o))
4 0ss 3401 . . . 4 ∅ ⊆ 1o
5 sseq1 3120 . . . 4 (𝐴 = ∅ → (𝐴 ⊆ 1o ↔ ∅ ⊆ 1o))
64, 5mpbiri 167 . . 3 (𝐴 = ∅ → 𝐴 ⊆ 1o)
7 eqimss 3151 . . 3 (𝐴 = 1o𝐴 ⊆ 1o)
86, 7jaoi 705 . 2 ((𝐴 = ∅ ∨ 𝐴 = 1o) → 𝐴 ⊆ 1o)
93, 8syl 14 1 (𝐴 ∈ 2o𝐴 ⊆ 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 697   = wceq 1331  wcel 1480  wss 3071  c0 3363  {cpr 3528  1oc1o 6306  2oc2o 6307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-sn 3533  df-pr 3534  df-suc 4293  df-1o 6313  df-2o 6314
This theorem is referenced by:  nninfsellemsuc  13208
  Copyright terms: Public domain W3C validator