![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluniimadm | GIF version |
Description: Membership in the union of an image of a function. (Contributed by Jim Kingdon, 10-Jan-2019.) |
Ref | Expression |
---|---|
eluniimadm | ⊢ (𝐹 Fn A → (B ∈ ∪ (𝐹 “ A) ↔ ∃x ∈ A B ∈ (𝐹‘x))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 3652 | . 2 ⊢ (B ∈ ∪ x ∈ A (𝐹‘x) ↔ ∃x ∈ A B ∈ (𝐹‘x)) | |
2 | funiunfvdm 5345 | . . 3 ⊢ (𝐹 Fn A → ∪ x ∈ A (𝐹‘x) = ∪ (𝐹 “ A)) | |
3 | 2 | eleq2d 2104 | . 2 ⊢ (𝐹 Fn A → (B ∈ ∪ x ∈ A (𝐹‘x) ↔ B ∈ ∪ (𝐹 “ A))) |
4 | 1, 3 | syl5rbbr 184 | 1 ⊢ (𝐹 Fn A → (B ∈ ∪ (𝐹 “ A) ↔ ∃x ∈ A B ∈ (𝐹‘x))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∈ wcel 1390 ∃wrex 2301 ∪ cuni 3571 ∪ ciun 3648 “ cima 4291 Fn wfn 4840 ‘cfv 4845 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-v 2553 df-sbc 2759 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-uni 3572 df-iun 3650 df-br 3756 df-opab 3810 df-mpt 3811 df-id 4021 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-rn 4299 df-res 4300 df-ima 4301 df-iota 4810 df-fun 4847 df-fn 4848 df-fv 4853 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |