ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqoprab2b GIF version

Theorem eqoprab2b 5615
Description: Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 4063. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
eqoprab2b ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))

Proof of Theorem eqoprab2b
StepHypRef Expression
1 ssoprab2b 5614 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
2 ssoprab2b 5614 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ ∀𝑥𝑦𝑧(𝜓𝜑))
31, 2anbi12i 448 . 2 (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ∧ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) ↔ (∀𝑥𝑦𝑧(𝜑𝜓) ∧ ∀𝑥𝑦𝑧(𝜓𝜑)))
4 eqss 3024 . 2 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ∧ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
5 2albiim 1418 . . . 4 (∀𝑦𝑧(𝜑𝜓) ↔ (∀𝑦𝑧(𝜑𝜓) ∧ ∀𝑦𝑧(𝜓𝜑)))
65albii 1400 . . 3 (∀𝑥𝑦𝑧(𝜑𝜓) ↔ ∀𝑥(∀𝑦𝑧(𝜑𝜓) ∧ ∀𝑦𝑧(𝜓𝜑)))
7 19.26 1411 . . 3 (∀𝑥(∀𝑦𝑧(𝜑𝜓) ∧ ∀𝑦𝑧(𝜓𝜑)) ↔ (∀𝑥𝑦𝑧(𝜑𝜓) ∧ ∀𝑥𝑦𝑧(𝜓𝜑)))
86, 7bitri 182 . 2 (∀𝑥𝑦𝑧(𝜑𝜓) ↔ (∀𝑥𝑦𝑧(𝜑𝜓) ∧ ∀𝑥𝑦𝑧(𝜓𝜑)))
93, 4, 83bitr4i 210 1 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1283   = wceq 1285  wss 2983  {coprab 5565
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-setind 4309
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-v 2612  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-oprab 5568
This theorem is referenced by:  mpt22eqb  5662
  Copyright terms: Public domain W3C validator