ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0rn0 GIF version

Theorem f0rn0 5317
Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.)
Assertion
Ref Expression
f0rn0 ((𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸) → 𝑋 = ∅)
Distinct variable groups:   𝑦,𝐸   𝑦,𝑌
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem f0rn0
StepHypRef Expression
1 fdm 5278 . . 3 (𝐸:𝑋𝑌 → dom 𝐸 = 𝑋)
2 frn 5281 . . . . . . . . 9 (𝐸:𝑋𝑌 → ran 𝐸𝑌)
3 ralnex 2426 . . . . . . . . . 10 (∀𝑦𝑌 ¬ 𝑦 ∈ ran 𝐸 ↔ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)
4 disj 3411 . . . . . . . . . . 11 ((𝑌 ∩ ran 𝐸) = ∅ ↔ ∀𝑦𝑌 ¬ 𝑦 ∈ ran 𝐸)
5 df-ss 3084 . . . . . . . . . . . 12 (ran 𝐸𝑌 ↔ (ran 𝐸𝑌) = ran 𝐸)
6 incom 3268 . . . . . . . . . . . . . 14 (ran 𝐸𝑌) = (𝑌 ∩ ran 𝐸)
76eqeq1i 2147 . . . . . . . . . . . . 13 ((ran 𝐸𝑌) = ran 𝐸 ↔ (𝑌 ∩ ran 𝐸) = ran 𝐸)
8 eqtr2 2158 . . . . . . . . . . . . . 14 (((𝑌 ∩ ran 𝐸) = ran 𝐸 ∧ (𝑌 ∩ ran 𝐸) = ∅) → ran 𝐸 = ∅)
98ex 114 . . . . . . . . . . . . 13 ((𝑌 ∩ ran 𝐸) = ran 𝐸 → ((𝑌 ∩ ran 𝐸) = ∅ → ran 𝐸 = ∅))
107, 9sylbi 120 . . . . . . . . . . . 12 ((ran 𝐸𝑌) = ran 𝐸 → ((𝑌 ∩ ran 𝐸) = ∅ → ran 𝐸 = ∅))
115, 10sylbi 120 . . . . . . . . . . 11 (ran 𝐸𝑌 → ((𝑌 ∩ ran 𝐸) = ∅ → ran 𝐸 = ∅))
124, 11syl5bir 152 . . . . . . . . . 10 (ran 𝐸𝑌 → (∀𝑦𝑌 ¬ 𝑦 ∈ ran 𝐸 → ran 𝐸 = ∅))
133, 12syl5bir 152 . . . . . . . . 9 (ran 𝐸𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸 → ran 𝐸 = ∅))
142, 13syl 14 . . . . . . . 8 (𝐸:𝑋𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸 → ran 𝐸 = ∅))
1514imp 123 . . . . . . 7 ((𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸) → ran 𝐸 = ∅)
1615adantl 275 . . . . . 6 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → ran 𝐸 = ∅)
17 dm0rn0 4756 . . . . . 6 (dom 𝐸 = ∅ ↔ ran 𝐸 = ∅)
1816, 17sylibr 133 . . . . 5 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → dom 𝐸 = ∅)
19 eqeq1 2146 . . . . . . 7 (𝑋 = dom 𝐸 → (𝑋 = ∅ ↔ dom 𝐸 = ∅))
2019eqcoms 2142 . . . . . 6 (dom 𝐸 = 𝑋 → (𝑋 = ∅ ↔ dom 𝐸 = ∅))
2120adantr 274 . . . . 5 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → (𝑋 = ∅ ↔ dom 𝐸 = ∅))
2218, 21mpbird 166 . . . 4 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → 𝑋 = ∅)
2322exp32 362 . . 3 (dom 𝐸 = 𝑋 → (𝐸:𝑋𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸𝑋 = ∅)))
241, 23mpcom 36 . 2 (𝐸:𝑋𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸𝑋 = ∅))
2524imp 123 1 ((𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸) → 𝑋 = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  wrex 2417  cin 3070  wss 3071  c0 3363  dom cdm 4539  ran crn 4540  wf 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-cnv 4547  df-dm 4549  df-rn 4550  df-fn 5126  df-f 5127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator