ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disj GIF version

Theorem disj 3295
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.)
Assertion
Ref Expression
disj ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disj
StepHypRef Expression
1 df-in 2951 . . . 4 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
21eqeq1i 2063 . . 3 ((𝐴𝐵) = ∅ ↔ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = ∅)
3 abeq1 2163 . . 3 ({𝑥 ∣ (𝑥𝐴𝑥𝐵)} = ∅ ↔ ∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
4 imnan 634 . . . . 5 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
5 noel 3255 . . . . . 6 ¬ 𝑥 ∈ ∅
65nbn 625 . . . . 5 (¬ (𝑥𝐴𝑥𝐵) ↔ ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
74, 6bitr2i 178 . . . 4 (((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥𝐴 → ¬ 𝑥𝐵))
87albii 1375 . . 3 (∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
92, 3, 83bitri 199 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
10 df-ral 2328 . 2 (∀𝑥𝐴 ¬ 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
119, 10bitr4i 180 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  wal 1257   = wceq 1259  wcel 1409  {cab 2042  wral 2323  cin 2943  c0 3251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-v 2576  df-dif 2947  df-in 2951  df-nul 3252
This theorem is referenced by:  disjr  3296  disj1  3297  disjne  3300  renfdisj  7137  fvinim0ffz  9197
  Copyright terms: Public domain W3C validator