ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpoco GIF version

Theorem fmpoco 6113
Description: Composition of two functions. Variation of fmptco 5586 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
fmpoco.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑅𝐶)
fmpoco.2 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝑅))
fmpoco.3 (𝜑𝐺 = (𝑧𝐶𝑆))
fmpoco.4 (𝑧 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
fmpoco (𝜑 → (𝐺𝐹) = (𝑥𝐴, 𝑦𝐵𝑇))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑧,𝐶,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑧,𝑅   𝑧,𝑇
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝐵(𝑧)   𝑅(𝑥,𝑦)   𝑆(𝑧)   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem fmpoco
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmpoco.1 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑅𝐶)
21ralrimivva 2514 . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝑅𝐶)
3 eqid 2139 . . . . . 6 (𝑥𝐴, 𝑦𝐵𝑅) = (𝑥𝐴, 𝑦𝐵𝑅)
43fmpo 6099 . . . . 5 (∀𝑥𝐴𝑦𝐵 𝑅𝐶 ↔ (𝑥𝐴, 𝑦𝐵𝑅):(𝐴 × 𝐵)⟶𝐶)
52, 4sylib 121 . . . 4 (𝜑 → (𝑥𝐴, 𝑦𝐵𝑅):(𝐴 × 𝐵)⟶𝐶)
6 nfcv 2281 . . . . . . 7 𝑢𝑅
7 nfcv 2281 . . . . . . 7 𝑣𝑅
8 nfcv 2281 . . . . . . . 8 𝑥𝑣
9 nfcsb1v 3035 . . . . . . . 8 𝑥𝑢 / 𝑥𝑅
108, 9nfcsb 3037 . . . . . . 7 𝑥𝑣 / 𝑦𝑢 / 𝑥𝑅
11 nfcsb1v 3035 . . . . . . 7 𝑦𝑣 / 𝑦𝑢 / 𝑥𝑅
12 csbeq1a 3012 . . . . . . . 8 (𝑥 = 𝑢𝑅 = 𝑢 / 𝑥𝑅)
13 csbeq1a 3012 . . . . . . . 8 (𝑦 = 𝑣𝑢 / 𝑥𝑅 = 𝑣 / 𝑦𝑢 / 𝑥𝑅)
1412, 13sylan9eq 2192 . . . . . . 7 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑅 = 𝑣 / 𝑦𝑢 / 𝑥𝑅)
156, 7, 10, 11, 14cbvmpo 5850 . . . . . 6 (𝑥𝐴, 𝑦𝐵𝑅) = (𝑢𝐴, 𝑣𝐵𝑣 / 𝑦𝑢 / 𝑥𝑅)
16 vex 2689 . . . . . . . . . 10 𝑢 ∈ V
17 vex 2689 . . . . . . . . . 10 𝑣 ∈ V
1816, 17op2ndd 6047 . . . . . . . . 9 (𝑤 = ⟨𝑢, 𝑣⟩ → (2nd𝑤) = 𝑣)
1918csbeq1d 3010 . . . . . . . 8 (𝑤 = ⟨𝑢, 𝑣⟩ → (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 = 𝑣 / 𝑦(1st𝑤) / 𝑥𝑅)
2016, 17op1std 6046 . . . . . . . . . 10 (𝑤 = ⟨𝑢, 𝑣⟩ → (1st𝑤) = 𝑢)
2120csbeq1d 3010 . . . . . . . . 9 (𝑤 = ⟨𝑢, 𝑣⟩ → (1st𝑤) / 𝑥𝑅 = 𝑢 / 𝑥𝑅)
2221csbeq2dv 3028 . . . . . . . 8 (𝑤 = ⟨𝑢, 𝑣⟩ → 𝑣 / 𝑦(1st𝑤) / 𝑥𝑅 = 𝑣 / 𝑦𝑢 / 𝑥𝑅)
2319, 22eqtrd 2172 . . . . . . 7 (𝑤 = ⟨𝑢, 𝑣⟩ → (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 = 𝑣 / 𝑦𝑢 / 𝑥𝑅)
2423mpompt 5863 . . . . . 6 (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅) = (𝑢𝐴, 𝑣𝐵𝑣 / 𝑦𝑢 / 𝑥𝑅)
2515, 24eqtr4i 2163 . . . . 5 (𝑥𝐴, 𝑦𝐵𝑅) = (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅)
2625fmpt 5570 . . . 4 (∀𝑤 ∈ (𝐴 × 𝐵)(2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅𝐶 ↔ (𝑥𝐴, 𝑦𝐵𝑅):(𝐴 × 𝐵)⟶𝐶)
275, 26sylibr 133 . . 3 (𝜑 → ∀𝑤 ∈ (𝐴 × 𝐵)(2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅𝐶)
28 fmpoco.2 . . . 4 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝑅))
2928, 25syl6eq 2188 . . 3 (𝜑𝐹 = (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅))
30 fmpoco.3 . . 3 (𝜑𝐺 = (𝑧𝐶𝑆))
3127, 29, 30fmptcos 5588 . 2 (𝜑 → (𝐺𝐹) = (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 / 𝑧𝑆))
3223csbeq1d 3010 . . . . 5 (𝑤 = ⟨𝑢, 𝑣⟩ → (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 / 𝑧𝑆 = 𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆)
3332mpompt 5863 . . . 4 (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 / 𝑧𝑆) = (𝑢𝐴, 𝑣𝐵𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆)
34 nfcv 2281 . . . . 5 𝑢𝑅 / 𝑧𝑆
35 nfcv 2281 . . . . 5 𝑣𝑅 / 𝑧𝑆
36 nfcv 2281 . . . . . 6 𝑥𝑆
3710, 36nfcsb 3037 . . . . 5 𝑥𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆
38 nfcv 2281 . . . . . 6 𝑦𝑆
3911, 38nfcsb 3037 . . . . 5 𝑦𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆
4014csbeq1d 3010 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑅 / 𝑧𝑆 = 𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆)
4134, 35, 37, 39, 40cbvmpo 5850 . . . 4 (𝑥𝐴, 𝑦𝐵𝑅 / 𝑧𝑆) = (𝑢𝐴, 𝑣𝐵𝑣 / 𝑦𝑢 / 𝑥𝑅 / 𝑧𝑆)
4233, 41eqtr4i 2163 . . 3 (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 / 𝑧𝑆) = (𝑥𝐴, 𝑦𝐵𝑅 / 𝑧𝑆)
4313impb 1177 . . . . 5 ((𝜑𝑥𝐴𝑦𝐵) → 𝑅𝐶)
44 nfcvd 2282 . . . . . 6 (𝑅𝐶𝑧𝑇)
45 fmpoco.4 . . . . . 6 (𝑧 = 𝑅𝑆 = 𝑇)
4644, 45csbiegf 3043 . . . . 5 (𝑅𝐶𝑅 / 𝑧𝑆 = 𝑇)
4743, 46syl 14 . . . 4 ((𝜑𝑥𝐴𝑦𝐵) → 𝑅 / 𝑧𝑆 = 𝑇)
4847mpoeq3dva 5835 . . 3 (𝜑 → (𝑥𝐴, 𝑦𝐵𝑅 / 𝑧𝑆) = (𝑥𝐴, 𝑦𝐵𝑇))
4942, 48syl5eq 2184 . 2 (𝜑 → (𝑤 ∈ (𝐴 × 𝐵) ↦ (2nd𝑤) / 𝑦(1st𝑤) / 𝑥𝑅 / 𝑧𝑆) = (𝑥𝐴, 𝑦𝐵𝑇))
5031, 49eqtrd 2172 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴, 𝑦𝐵𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  wral 2416  csb 3003  cop 3530  cmpt 3989   × cxp 4537  ccom 4543  wf 5119  cfv 5123  cmpo 5776  1st c1st 6036  2nd c2nd 6037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039
This theorem is referenced by:  oprabco  6114  txswaphmeolem  12489  bdxmet  12670
  Copyright terms: Public domain W3C validator