ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fovrnd GIF version

Theorem fovrnd 5673
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
fovrnd.1 (𝜑𝐹:(𝑅 × 𝑆)⟶𝐶)
fovrnd.2 (𝜑𝐴𝑅)
fovrnd.3 (𝜑𝐵𝑆)
Assertion
Ref Expression
fovrnd (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶)

Proof of Theorem fovrnd
StepHypRef Expression
1 fovrnd.1 . 2 (𝜑𝐹:(𝑅 × 𝑆)⟶𝐶)
2 fovrnd.2 . 2 (𝜑𝐴𝑅)
3 fovrnd.3 . 2 (𝜑𝐵𝑆)
4 fovrn 5671 . 2 ((𝐹:(𝑅 × 𝑆)⟶𝐶𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
51, 2, 3, 4syl3anc 1146 1 (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1409   × cxp 4371  wf 4926  (class class class)co 5540
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-fv 4938  df-ov 5543
This theorem is referenced by:  eroveu  6228
  Copyright terms: Public domain W3C validator