ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txmetcnp GIF version

Theorem txmetcnp 12687
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
txmetcnp.4 𝐿 = (MetOpen‘𝐸)
Assertion
Ref Expression
txmetcnp (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑧,𝐹   𝑢,𝐽,𝑣,𝑤,𝑧   𝑢,𝐾,𝑣,𝑤,𝑧   𝑢,𝑋,𝑣,𝑤,𝑧   𝑢,𝑌,𝑣,𝑤,𝑧   𝑢,𝑍,𝑣,𝑤,𝑧   𝑢,𝐴,𝑣,𝑤,𝑧   𝑢,𝐶,𝑣,𝑤,𝑧   𝑢,𝐷,𝑣,𝑤,𝑧   𝑢,𝐵,𝑣,𝑤,𝑧   𝑢,𝐸,𝑣,𝑤,𝑧   𝑤,𝐿,𝑧
Allowed substitution hints:   𝐿(𝑣,𝑢)

Proof of Theorem txmetcnp
Dummy variables 𝑡 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . . . 4 (𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < )) = (𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))
2 simp1 981 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → 𝐶 ∈ (∞Met‘𝑋))
32adantr 274 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐶 ∈ (∞Met‘𝑋))
4 simp2 982 . . . . 5 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → 𝐷 ∈ (∞Met‘𝑌))
54adantr 274 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐷 ∈ (∞Met‘𝑌))
61, 3, 5xmetxp 12676 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < )) ∈ (∞Met‘(𝑋 × 𝑌)))
7 simpl3 986 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐸 ∈ (∞Met‘𝑍))
8 simprl 520 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐴𝑋)
9 simprr 521 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐵𝑌)
108, 9opelxpd 4572 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
11 eqid 2139 . . . 4 (MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) = (MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < )))
12 txmetcnp.4 . . . 4 𝐿 = (MetOpen‘𝐸)
1311, 12metcnp 12681 . . 3 (((𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < )) ∈ (∞Met‘(𝑋 × 𝑌)) ∧ 𝐸 ∈ (∞Met‘𝑍) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → (𝐹 ∈ (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧))))
146, 7, 10, 13syl3anc 1216 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧))))
15 metcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐶)
16 metcn.4 . . . . . 6 𝐾 = (MetOpen‘𝐷)
171, 3, 5, 15, 16, 11xmettx 12679 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) = (𝐽 ×t 𝐾))
1817oveq1d 5789 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) CnP 𝐿) = ((𝐽 ×t 𝐾) CnP 𝐿))
1918fveq1d 5423 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) = (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩))
2019eleq2d 2209 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩)))
21 oveq2 5782 . . . . . . . . 9 (𝑡 = ⟨𝑢, 𝑣⟩ → (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) = (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩))
2221breq1d 3939 . . . . . . . 8 (𝑡 = ⟨𝑢, 𝑣⟩ → ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 ↔ (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤))
23 fveq2 5421 . . . . . . . . . 10 (𝑡 = ⟨𝑢, 𝑣⟩ → (𝐹𝑡) = (𝐹‘⟨𝑢, 𝑣⟩))
2423oveq2d 5790 . . . . . . . . 9 (𝑡 = ⟨𝑢, 𝑣⟩ → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) = ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)))
2524breq1d 3939 . . . . . . . 8 (𝑡 = ⟨𝑢, 𝑣⟩ → (((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧 ↔ ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧))
2622, 25imbi12d 233 . . . . . . 7 (𝑡 = ⟨𝑢, 𝑣⟩ → (((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧) ↔ ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧)))
2726ralxp 4682 . . . . . 6 (∀𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧))
288ad4antr 485 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐴𝑋)
299ad4antr 485 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐵𝑌)
3028, 29opelxpd 4572 . . . . . . . . . . . . 13 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
31 simplr 519 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝑢𝑋)
32 simpr 109 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝑣𝑌)
3331, 32opelxpd 4572 . . . . . . . . . . . . 13 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ⟨𝑢, 𝑣⟩ ∈ (𝑋 × 𝑌))
342ad5antr 487 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐶 ∈ (∞Met‘𝑋))
35 xmetf 12519 . . . . . . . . . . . . . . . 16 (𝐶 ∈ (∞Met‘𝑋) → 𝐶:(𝑋 × 𝑋)⟶ℝ*)
3634, 35syl 14 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐶:(𝑋 × 𝑋)⟶ℝ*)
37 op1stg 6048 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋𝐵𝑌) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
3828, 29, 37syl2anc 408 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
3938, 28eqeltrd 2216 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (1st ‘⟨𝐴, 𝐵⟩) ∈ 𝑋)
40 op1stg 6048 . . . . . . . . . . . . . . . . 17 ((𝑢𝑋𝑣𝑌) → (1st ‘⟨𝑢, 𝑣⟩) = 𝑢)
4140adantll 467 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (1st ‘⟨𝑢, 𝑣⟩) = 𝑢)
4241, 31eqeltrd 2216 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (1st ‘⟨𝑢, 𝑣⟩) ∈ 𝑋)
4336, 39, 42fovrnd 5915 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)) ∈ ℝ*)
444ad5antr 487 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐷 ∈ (∞Met‘𝑌))
45 xmetf 12519 . . . . . . . . . . . . . . . 16 (𝐷 ∈ (∞Met‘𝑌) → 𝐷:(𝑌 × 𝑌)⟶ℝ*)
4644, 45syl 14 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝐷:(𝑌 × 𝑌)⟶ℝ*)
47 op2ndg 6049 . . . . . . . . . . . . . . . . 17 ((𝐴𝑋𝐵𝑌) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4828, 29, 47syl2anc 408 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
4948, 29eqeltrd 2216 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (2nd ‘⟨𝐴, 𝐵⟩) ∈ 𝑌)
50 op2ndg 6049 . . . . . . . . . . . . . . . . 17 ((𝑢𝑋𝑣𝑌) → (2nd ‘⟨𝑢, 𝑣⟩) = 𝑣)
5150adantll 467 . . . . . . . . . . . . . . . 16 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (2nd ‘⟨𝑢, 𝑣⟩) = 𝑣)
5251, 32eqeltrd 2216 . . . . . . . . . . . . . . 15 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (2nd ‘⟨𝑢, 𝑣⟩) ∈ 𝑌)
5346, 49, 52fovrnd 5915 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩)) ∈ ℝ*)
54 xrmaxcl 11021 . . . . . . . . . . . . . 14 ((((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)) ∈ ℝ* ∧ ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩)) ∈ ℝ*) → sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ) ∈ ℝ*)
5543, 53, 54syl2anc 408 . . . . . . . . . . . . 13 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ) ∈ ℝ*)
56 fveq2 5421 . . . . . . . . . . . . . . . . 17 (𝑟 = ⟨𝐴, 𝐵⟩ → (1st𝑟) = (1st ‘⟨𝐴, 𝐵⟩))
57 fveq2 5421 . . . . . . . . . . . . . . . . 17 (𝑠 = ⟨𝑢, 𝑣⟩ → (1st𝑠) = (1st ‘⟨𝑢, 𝑣⟩))
5856, 57oveqan12d 5793 . . . . . . . . . . . . . . . 16 ((𝑟 = ⟨𝐴, 𝐵⟩ ∧ 𝑠 = ⟨𝑢, 𝑣⟩) → ((1st𝑟)𝐶(1st𝑠)) = ((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)))
59 fveq2 5421 . . . . . . . . . . . . . . . . 17 (𝑟 = ⟨𝐴, 𝐵⟩ → (2nd𝑟) = (2nd ‘⟨𝐴, 𝐵⟩))
60 fveq2 5421 . . . . . . . . . . . . . . . . 17 (𝑠 = ⟨𝑢, 𝑣⟩ → (2nd𝑠) = (2nd ‘⟨𝑢, 𝑣⟩))
6159, 60oveqan12d 5793 . . . . . . . . . . . . . . . 16 ((𝑟 = ⟨𝐴, 𝐵⟩ ∧ 𝑠 = ⟨𝑢, 𝑣⟩) → ((2nd𝑟)𝐷(2nd𝑠)) = ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩)))
6258, 61preq12d 3608 . . . . . . . . . . . . . . 15 ((𝑟 = ⟨𝐴, 𝐵⟩ ∧ 𝑠 = ⟨𝑢, 𝑣⟩) → {((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))} = {((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))})
6362supeq1d 6874 . . . . . . . . . . . . . 14 ((𝑟 = ⟨𝐴, 𝐵⟩ ∧ 𝑠 = ⟨𝑢, 𝑣⟩) → sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ) = sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ))
6463, 1ovmpoga 5900 . . . . . . . . . . . . 13 ((⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌) ∧ ⟨𝑢, 𝑣⟩ ∈ (𝑋 × 𝑌) ∧ sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ) ∈ ℝ*) → (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) = sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ))
6530, 33, 55, 64syl3anc 1216 . . . . . . . . . . . 12 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) = sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ))
6638, 41oveq12d 5792 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)) = (𝐴𝐶𝑢))
6748, 51oveq12d 5792 . . . . . . . . . . . . . 14 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩)) = (𝐵𝐷𝑣))
6866, 67preq12d 3608 . . . . . . . . . . . . 13 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → {((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))} = {(𝐴𝐶𝑢), (𝐵𝐷𝑣)})
6968supeq1d 6874 . . . . . . . . . . . 12 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → sup({((1st ‘⟨𝐴, 𝐵⟩)𝐶(1st ‘⟨𝑢, 𝑣⟩)), ((2nd ‘⟨𝐴, 𝐵⟩)𝐷(2nd ‘⟨𝑢, 𝑣⟩))}, ℝ*, < ) = sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ))
7065, 69eqtrd 2172 . . . . . . . . . . 11 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) = sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ))
7170breq1d 3939 . . . . . . . . . 10 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 ↔ sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ) < 𝑤))
72 xmetcl 12521 . . . . . . . . . . . 12 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑢𝑋) → (𝐴𝐶𝑢) ∈ ℝ*)
7334, 28, 31, 72syl3anc 1216 . . . . . . . . . . 11 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (𝐴𝐶𝑢) ∈ ℝ*)
74 xmetcl 12521 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑌) ∧ 𝐵𝑌𝑣𝑌) → (𝐵𝐷𝑣) ∈ ℝ*)
7544, 29, 32, 74syl3anc 1216 . . . . . . . . . . 11 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (𝐵𝐷𝑣) ∈ ℝ*)
76 rpxr 9449 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+𝑤 ∈ ℝ*)
7776ad3antlr 484 . . . . . . . . . . 11 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → 𝑤 ∈ ℝ*)
78 xrmaxltsup 11027 . . . . . . . . . . 11 (((𝐴𝐶𝑢) ∈ ℝ* ∧ (𝐵𝐷𝑣) ∈ ℝ*𝑤 ∈ ℝ*) → (sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
7973, 75, 77, 78syl3anc 1216 . . . . . . . . . 10 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (sup({(𝐴𝐶𝑢), (𝐵𝐷𝑣)}, ℝ*, < ) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
8071, 79bitrd 187 . . . . . . . . 9 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
81 df-ov 5777 . . . . . . . . . . . . 13 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
82 df-ov 5777 . . . . . . . . . . . . 13 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
8381, 82oveq12i 5786 . . . . . . . . . . . 12 ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) = ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩))
8483breq1i 3936 . . . . . . . . . . 11 (((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧 ↔ ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧)
8584bicomi 131 . . . . . . . . . 10 (((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧 ↔ ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)
8685a1i 9 . . . . . . . . 9 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧 ↔ ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))
8780, 86imbi12d 233 . . . . . . . 8 (((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) ∧ 𝑣𝑌) → (((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
8887ralbidva 2433 . . . . . . 7 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑢𝑋) → (∀𝑣𝑌 ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧) ↔ ∀𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
8988ralbidva 2433 . . . . . 6 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹‘⟨𝑢, 𝑣⟩)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
9027, 89syl5bb 191 . . . . 5 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
9190rexbidva 2434 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝑧 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧) ↔ ∃𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
9291ralbidva 2433 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
9392anbi2d 459 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑡 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(𝑟 ∈ (𝑋 × 𝑌), 𝑠 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑟)𝐶(1st𝑠)), ((2nd𝑟)𝐷(2nd𝑠))}, ℝ*, < ))𝑡) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑡)) < 𝑧)) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
9414, 20, 933bitr3d 217 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wral 2416  wrex 2417  {cpr 3528  cop 3530   class class class wbr 3929   × cxp 4537  wf 5119  cfv 5123  (class class class)co 5774  cmpo 5776  1st c1st 6036  2nd c2nd 6037  supcsup 6869  *cxr 7799   < clt 7800  +crp 9441  ∞Metcxmet 12149  MetOpencmopn 12154   CnP ccnp 12355   ×t ctx 12421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-cnp 12358  df-tx 12422
This theorem is referenced by:  txmetcn  12688  limccnp2cntop  12815
  Copyright terms: Public domain W3C validator