ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2 GIF version

Theorem fun2 5092
Description: The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
fun2 (((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)

Proof of Theorem fun2
StepHypRef Expression
1 fun 5091 . 2 (((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐶))
2 unidm 3114 . . 3 (𝐶𝐶) = 𝐶
3 feq3 5060 . . 3 ((𝐶𝐶) = 𝐶 → ((𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐶) ↔ (𝐹𝐺):(𝐴𝐵)⟶𝐶))
42, 3ax-mp 7 . 2 ((𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐶) ↔ (𝐹𝐺):(𝐴𝐵)⟶𝐶)
51, 4sylib 131 1 (((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  cun 2943  cin 2944  c0 3252  wf 4926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-id 4058  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-fun 4932  df-fn 4933  df-f 4934
This theorem is referenced by:  ac6sfi  6383  fseq1p1m1  9058
  Copyright terms: Public domain W3C validator