ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopab GIF version

Theorem funopab 4963
Description: A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.)
Assertion
Ref Expression
funopab (Fun {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem funopab
StepHypRef Expression
1 relopab 4492 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 nfopab1 3854 . . . 4 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
3 nfopab2 3855 . . . 4 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
42, 3dffun6f 4943 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ∀𝑥∃*𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦))
51, 4mpbiran 858 . 2 (Fun {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∀𝑥∃*𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦)
6 df-br 3793 . . . . 5 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
7 opabid 4022 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
86, 7bitri 177 . . . 4 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦𝜑)
98mobii 1953 . . 3 (∃*𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ∃*𝑦𝜑)
109albii 1375 . 2 (∀𝑥∃*𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ∀𝑥∃*𝑦𝜑)
115, 10bitri 177 1 (Fun {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wb 102  wal 1257  wcel 1409  ∃*wmo 1917  cop 3406   class class class wbr 3792  {copab 3845  Rel wrel 4378  Fun wfun 4924
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-fun 4932
This theorem is referenced by:  funopabeq  4964  isarep2  5014  fnopabg  5050  fvopab3ig  5274  opabex  5413  funoprabg  5628
  Copyright terms: Public domain W3C validator