![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fveu | GIF version |
Description: The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017.) |
Ref | Expression |
---|---|
fveu | ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 4934 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
2 | iotauni 4903 | . 2 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (℩𝑥𝐴𝐹𝑥) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) | |
3 | 1, 2 | syl5eq 2126 | 1 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∃!weu 1942 {cab 2068 ∪ cuni 3603 class class class wbr 3787 ℩cio 4889 ‘cfv 4926 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-eu 1945 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-rex 2355 df-v 2604 df-sbc 2817 df-un 2978 df-sn 3406 df-pr 3407 df-uni 3604 df-iota 4891 df-fv 4934 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |