ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzass4 GIF version

Theorem fzass4 9026
Description: Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzass4 ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)))

Proof of Theorem fzass4
StepHypRef Expression
1 simpll 489 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐵 ∈ (ℤ𝐴))
2 simprl 491 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐶 ∈ (ℤ𝐵))
31, 2jca 294 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → (𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)))
4 uztrn 8584 . . . . . 6 ((𝐶 ∈ (ℤ𝐵) ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐶 ∈ (ℤ𝐴))
54ancoms 259 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) → 𝐶 ∈ (ℤ𝐴))
65ad2ant2r 486 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐶 ∈ (ℤ𝐴))
7 simprr 492 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐷 ∈ (ℤ𝐶))
83, 6, 7jca32 297 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))))
9 simpll 489 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐵 ∈ (ℤ𝐴))
10 uztrn 8584 . . . . . . 7 ((𝐷 ∈ (ℤ𝐶) ∧ 𝐶 ∈ (ℤ𝐵)) → 𝐷 ∈ (ℤ𝐵))
1110ancoms 259 . . . . . 6 ((𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶)) → 𝐷 ∈ (ℤ𝐵))
1211ad2ant2l 485 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐷 ∈ (ℤ𝐵))
139, 12jca 294 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → (𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)))
14 simplr 490 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐶 ∈ (ℤ𝐵))
15 simprr 492 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐷 ∈ (ℤ𝐶))
1613, 14, 15jca32 297 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → ((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))))
178, 16impbii 121 . 2 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) ↔ ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))))
18 elfzuzb 8985 . . 3 (𝐵 ∈ (𝐴...𝐷) ↔ (𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)))
19 elfzuzb 8985 . . 3 (𝐶 ∈ (𝐵...𝐷) ↔ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶)))
2018, 19anbi12i 441 . 2 ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ ((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))))
21 elfzuzb 8985 . . 3 (𝐵 ∈ (𝐴...𝐶) ↔ (𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)))
22 elfzuzb 8985 . . 3 (𝐶 ∈ (𝐴...𝐷) ↔ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶)))
2321, 22anbi12i 441 . 2 ((𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)) ↔ ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))))
2417, 20, 233bitr4i 205 1 ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102  wcel 1409  cfv 4929  (class class class)co 5539  cuz 8568  ...cfz 8975
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-cnex 7032  ax-resscn 7033  ax-pre-ltwlin 7054
This theorem depends on definitions:  df-bi 114  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2787  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-neg 7247  df-z 8302  df-uz 8569  df-fz 8976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator