![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzo0ss1 | GIF version |
Description: Subset relationship for half-open integer ranges with lower bounds 0 and 1. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
Ref | Expression |
---|---|
fzo0ss1 | ⊢ (1..^𝑁) ⊆ (0..^𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1eluzge0 8795 | . 2 ⊢ 1 ∈ (ℤ≥‘0) | |
2 | fzoss1 9309 | . 2 ⊢ (1 ∈ (ℤ≥‘0) → (1..^𝑁) ⊆ (0..^𝑁)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (1..^𝑁) ⊆ (0..^𝑁) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 ⊆ wss 2982 ‘cfv 4952 (class class class)co 5563 0cc0 7095 1c1 7096 ℤ≥cuz 8752 ..^cfzo 9281 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7181 ax-resscn 7182 ax-1cn 7183 ax-1re 7184 ax-icn 7185 ax-addcl 7186 ax-addrcl 7187 ax-mulcl 7188 ax-addcom 7190 ax-addass 7192 ax-distr 7194 ax-i2m1 7195 ax-0lt1 7196 ax-0id 7198 ax-rnegex 7199 ax-cnre 7201 ax-pre-ltirr 7202 ax-pre-ltwlin 7203 ax-pre-lttrn 7204 ax-pre-ltadd 7206 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-id 4076 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-fv 4960 df-riota 5519 df-ov 5566 df-oprab 5567 df-mpt2 5568 df-1st 5818 df-2nd 5819 df-pnf 7269 df-mnf 7270 df-xr 7271 df-ltxr 7272 df-le 7273 df-sub 7400 df-neg 7401 df-inn 8159 df-n0 8408 df-z 8485 df-uz 8753 df-fz 9158 df-fzo 9282 |
This theorem is referenced by: dfphi2 10803 |
Copyright terms: Public domain | W3C validator |