ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpridd GIF version

Theorem grpridd 5724
Description: Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grprinvlem.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
grprinvlem.o (𝜑𝑂𝐵)
grprinvlem.i ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
grprinvlem.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
grprinvlem.n ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
Assertion
Ref Expression
grpridd ((𝜑𝑥𝐵) → (𝑥 + 𝑂) = 𝑥)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑂,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧

Proof of Theorem grpridd
Dummy variables 𝑢 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grprinvlem.n . . . 4 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
2 oveq1 5546 . . . . . 6 (𝑦 = 𝑛 → (𝑦 + 𝑥) = (𝑛 + 𝑥))
32eqeq1d 2064 . . . . 5 (𝑦 = 𝑛 → ((𝑦 + 𝑥) = 𝑂 ↔ (𝑛 + 𝑥) = 𝑂))
43cbvrexv 2551 . . . 4 (∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂 ↔ ∃𝑛𝐵 (𝑛 + 𝑥) = 𝑂)
51, 4sylib 131 . . 3 ((𝜑𝑥𝐵) → ∃𝑛𝐵 (𝑛 + 𝑥) = 𝑂)
6 grprinvlem.a . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
76caovassg 5686 . . . . . . 7 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
87adantlr 454 . . . . . 6 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
9 simprl 491 . . . . . 6 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → 𝑥𝐵)
10 simprrl 499 . . . . . 6 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → 𝑛𝐵)
118, 9, 10, 9caovassd 5687 . . . . 5 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → ((𝑥 + 𝑛) + 𝑥) = (𝑥 + (𝑛 + 𝑥)))
12 grprinvlem.c . . . . . . 7 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
13 grprinvlem.o . . . . . . 7 (𝜑𝑂𝐵)
14 grprinvlem.i . . . . . . 7 ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
15 simprrr 500 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → (𝑛 + 𝑥) = 𝑂)
1612, 13, 14, 6, 1, 9, 10, 15grprinvd 5723 . . . . . 6 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → (𝑥 + 𝑛) = 𝑂)
1716oveq1d 5554 . . . . 5 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → ((𝑥 + 𝑛) + 𝑥) = (𝑂 + 𝑥))
1815oveq2d 5555 . . . . 5 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → (𝑥 + (𝑛 + 𝑥)) = (𝑥 + 𝑂))
1911, 17, 183eqtr3d 2096 . . . 4 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → (𝑂 + 𝑥) = (𝑥 + 𝑂))
2019anassrs 386 . . 3 (((𝜑𝑥𝐵) ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂)) → (𝑂 + 𝑥) = (𝑥 + 𝑂))
215, 20rexlimddv 2454 . 2 ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = (𝑥 + 𝑂))
2221, 14eqtr3d 2090 1 ((𝜑𝑥𝐵) → (𝑥 + 𝑂) = 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896   = wceq 1259  wcel 1409  wrex 2324  (class class class)co 5539
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-iota 4894  df-fv 4937  df-ov 5542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator