ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemex GIF version

Theorem ivthinclemex 12792
Description: Lemma for ivthinc 12793. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemex (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑧 ∧ ∀𝑟𝑅 𝑧 < 𝑟))
Distinct variable groups:   𝐴,𝑞,𝑟,𝑤   𝑥,𝐴,𝑦,𝑞,𝑟   𝑧,𝐴,𝑞,𝑟   𝐵,𝑞,𝑟,𝑤   𝑥,𝐵,𝑦   𝑧,𝐵   𝑤,𝐹   𝑥,𝐹,𝑦   𝐿,𝑞,𝑟,𝑥,𝑦   𝑧,𝐿   𝑅,𝑞,𝑟,𝑥,𝑦   𝑧,𝑅   𝑤,𝑈   𝜑,𝑞,𝑟,𝑥,𝑦   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑟,𝑞)   𝑅(𝑤)   𝑈(𝑥,𝑦,𝑧,𝑟,𝑞)   𝐹(𝑧,𝑟,𝑞)   𝐿(𝑤)

Proof of Theorem ivthinclemex
StepHypRef Expression
1 ivth.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ivthinclem.l . . . 4 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
4 ssrab2 3182 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈} ⊆ (𝐴[,]𝐵)
53, 4eqsstri 3129 . . 3 𝐿 ⊆ (𝐴[,]𝐵)
65a1i 9 . 2 (𝜑𝐿 ⊆ (𝐴[,]𝐵))
7 ivthinclem.r . . . 4 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
8 ssrab2 3182 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)} ⊆ (𝐴[,]𝐵)
97, 8eqsstri 3129 . . 3 𝑅 ⊆ (𝐴[,]𝐵)
109a1i 9 . 2 (𝜑𝑅 ⊆ (𝐴[,]𝐵))
11 ivth.3 . . 3 (𝜑𝑈 ∈ ℝ)
12 ivth.4 . . 3 (𝜑𝐴 < 𝐵)
13 ivth.5 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
14 ivth.7 . . 3 (𝜑𝐹 ∈ (𝐷cn→ℂ))
15 ivth.8 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 ivth.9 . . 3 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
17 ivthinc.i . . 3 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
181, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemlm 12784 . 2 (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
191, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemum 12785 . 2 (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑅)
201, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemlr 12787 . 2 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
211, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemur 12789 . 2 (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑅 ↔ ∃𝑞𝑅 𝑞 < 𝑟))
221, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemdisj 12790 . 2 (𝜑 → (𝐿𝑅) = ∅)
231, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemloc 12791 . 2 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑅)))
241, 2, 6, 10, 18, 19, 20, 21, 22, 23, 12dedekindicc 12783 1 (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑧 ∧ ∀𝑟𝑅 𝑧 < 𝑟))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  ∃!wreu 2418  {crab 2420  wss 3071   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7621  cr 7622   < clt 7803  (,)cioo 9674  [,]cicc 9677  cnccncf 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741  ax-arch 7742  ax-caucvg 7743  ax-pre-suploc 7744
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436  df-inn 8724  df-2 8782  df-3 8783  df-4 8784  df-n0 8981  df-z 9058  df-uz 9330  df-rp 9445  df-ioo 9678  df-icc 9681  df-seqfrec 10222  df-exp 10296  df-cj 10617  df-re 10618  df-im 10619  df-rsqrt 10773  df-abs 10774  df-cncf 12730
This theorem is referenced by:  ivthinc  12793
  Copyright terms: Public domain W3C validator