ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metequiv2 GIF version

Theorem metequiv2 12668
Description: If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpen‘𝐶)
metequiv.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metequiv2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → 𝐽 = 𝐾))
Distinct variable groups:   𝑠,𝑟,𝑥,𝐶   𝐽,𝑟,𝑠,𝑥   𝐾,𝑟,𝑠,𝑥   𝐷,𝑟,𝑠,𝑥   𝑋,𝑟,𝑠,𝑥

Proof of Theorem metequiv2
StepHypRef Expression
1 simprrr 529 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠))
2 simplll 522 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝐶 ∈ (∞Met‘𝑋))
3 simplr 519 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑥𝑋)
4 simprlr 527 . . . . . . . . . . . . 13 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑠 ∈ ℝ+)
54rpxrd 9487 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑠 ∈ ℝ*)
6 simprll 526 . . . . . . . . . . . . 13 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑟 ∈ ℝ+)
76rpxrd 9487 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑟 ∈ ℝ*)
8 simprrl 528 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑠𝑟)
9 ssbl 12598 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑠 ∈ ℝ*𝑟 ∈ ℝ*) ∧ 𝑠𝑟) → (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))
102, 3, 5, 7, 8, 9syl221anc 1227 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))
111, 10eqsstrrd 3134 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))
12 simpllr 523 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝐷 ∈ (∞Met‘𝑋))
13 ssbl 12598 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑠 ∈ ℝ*𝑟 ∈ ℝ*) ∧ 𝑠𝑟) → (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))
1412, 3, 5, 7, 8, 13syl221anc 1227 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))
151, 14eqsstrd 3133 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))
1611, 15jca 304 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟)))
1716expr 372 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ((𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
1817anassrs 397 . . . . . . 7 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑠 ∈ ℝ+) → ((𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
1918reximdva 2534 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) → (∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → ∃𝑠 ∈ ℝ+ ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
20 r19.40 2585 . . . . . 6 (∃𝑠 ∈ ℝ+ ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟)) → (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟)))
2119, 20syl6 33 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) → (∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
2221ralimdva 2499 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → ∀𝑟 ∈ ℝ+ (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
23 r19.26 2558 . . . 4 (∀𝑟 ∈ ℝ+ (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟)) ↔ (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟)))
2422, 23syl6ib 160 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
2524ralimdva 2499 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → ∀𝑥𝑋 (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
26 metequiv.3 . . 3 𝐽 = (MetOpen‘𝐶)
27 metequiv.4 . . 3 𝐾 = (MetOpen‘𝐷)
2826, 27metequiv 12667 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 = 𝐾 ↔ ∀𝑥𝑋 (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
2925, 28sylibrd 168 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → 𝐽 = 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  wrex 2417  wss 3071   class class class wbr 3929  cfv 5123  (class class class)co 5774  *cxr 7802  cle 7804  +crp 9444  ∞Metcxmet 12152  ballcbl 12154  MetOpencmopn 12157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741  ax-arch 7742  ax-caucvg 7743
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436  df-inn 8724  df-2 8782  df-3 8783  df-4 8784  df-n0 8981  df-z 9058  df-uz 9330  df-q 9415  df-rp 9445  df-xneg 9562  df-xadd 9563  df-seqfrec 10222  df-exp 10296  df-cj 10617  df-re 10618  df-im 10619  df-rsqrt 10773  df-abs 10774  df-topgen 12144  df-psmet 12159  df-xmet 12160  df-bl 12162  df-mopn 12163  df-top 12168  df-bases 12213
This theorem is referenced by:  bdmopn  12676
  Copyright terms: Public domain W3C validator