ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteqb GIF version

Theorem mpteqb 5511
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5518. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
mpteqb (∀𝑥𝐴 𝐵𝑉 → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem mpteqb
StepHypRef Expression
1 elex 2697 . . 3 (𝐵𝑉𝐵 ∈ V)
21ralimi 2495 . 2 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵 ∈ V)
3 fneq1 5211 . . . . . . 7 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ((𝑥𝐴𝐵) Fn 𝐴 ↔ (𝑥𝐴𝐶) Fn 𝐴))
4 eqid 2139 . . . . . . . 8 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54mptfng 5248 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
6 eqid 2139 . . . . . . . 8 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
76mptfng 5248 . . . . . . 7 (∀𝑥𝐴 𝐶 ∈ V ↔ (𝑥𝐴𝐶) Fn 𝐴)
83, 5, 73bitr4g 222 . . . . . 6 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V ↔ ∀𝑥𝐴 𝐶 ∈ V))
98biimpd 143 . . . . 5 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V → ∀𝑥𝐴 𝐶 ∈ V))
10 r19.26 2558 . . . . . . 7 (∀𝑥𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (∀𝑥𝐴 𝐵 ∈ V ∧ ∀𝑥𝐴 𝐶 ∈ V))
11 nfmpt1 4021 . . . . . . . . . 10 𝑥(𝑥𝐴𝐵)
12 nfmpt1 4021 . . . . . . . . . 10 𝑥(𝑥𝐴𝐶)
1311, 12nfeq 2289 . . . . . . . . 9 𝑥(𝑥𝐴𝐵) = (𝑥𝐴𝐶)
14 simpll 518 . . . . . . . . . . . 12 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
1514fveq1d 5423 . . . . . . . . . . 11 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐶)‘𝑥))
164fvmpt2 5504 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ V) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1716ad2ant2lr 501 . . . . . . . . . . 11 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
186fvmpt2 5504 . . . . . . . . . . . 12 ((𝑥𝐴𝐶 ∈ V) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
1918ad2ant2l 499 . . . . . . . . . . 11 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
2015, 17, 193eqtr3d 2180 . . . . . . . . . 10 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐵 = 𝐶)
2120exp31 361 . . . . . . . . 9 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (𝑥𝐴 → ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶)))
2213, 21ralrimi 2503 . . . . . . . 8 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ∀𝑥𝐴 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶))
23 ralim 2491 . . . . . . . 8 (∀𝑥𝐴 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶) → (∀𝑥𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) → ∀𝑥𝐴 𝐵 = 𝐶))
2422, 23syl 14 . . . . . . 7 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) → ∀𝑥𝐴 𝐵 = 𝐶))
2510, 24syl5bir 152 . . . . . 6 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ((∀𝑥𝐴 𝐵 ∈ V ∧ ∀𝑥𝐴 𝐶 ∈ V) → ∀𝑥𝐴 𝐵 = 𝐶))
2625expd 256 . . . . 5 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V → (∀𝑥𝐴 𝐶 ∈ V → ∀𝑥𝐴 𝐵 = 𝐶)))
279, 26mpdd 41 . . . 4 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V → ∀𝑥𝐴 𝐵 = 𝐶))
2827com12 30 . . 3 (∀𝑥𝐴 𝐵 ∈ V → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ∀𝑥𝐴 𝐵 = 𝐶))
29 eqid 2139 . . . 4 𝐴 = 𝐴
30 mpteq12 4011 . . . 4 ((𝐴 = 𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
3129, 30mpan 420 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
3228, 31impbid1 141 . 2 (∀𝑥𝐴 𝐵 ∈ V → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
332, 32syl 14 1 (∀𝑥𝐴 𝐵𝑉 → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  Vcvv 2686  cmpt 3989   Fn wfn 5118  cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131
This theorem is referenced by:  eqfnfv  5518  eufnfv  5648  offveqb  6001
  Copyright terms: Public domain W3C validator