ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oeiexg GIF version

Theorem oeiexg 6117
Description: Ordinal exponentiation is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
oeiexg ((𝐴𝑉𝐵𝑊) → (𝐴𝑜 𝐵) ∈ V)

Proof of Theorem oeiexg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2612 . . . 4 𝑦 ∈ V
2 1on 6092 . . . . . 6 1𝑜 ∈ On
32elexi 2619 . . . . 5 1𝑜 ∈ V
4 vex 2612 . . . . . . 7 𝑧 ∈ V
5 vex 2612 . . . . . . 7 𝑥 ∈ V
6 omexg 6115 . . . . . . 7 ((𝑧 ∈ V ∧ 𝑥 ∈ V) → (𝑧 ·𝑜 𝑥) ∈ V)
74, 5, 6mp2an 417 . . . . . 6 (𝑧 ·𝑜 𝑥) ∈ V
8 eqid 2083 . . . . . 6 (𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)) = (𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥))
97, 8fnmpti 5078 . . . . 5 (𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)) Fn V
103, 9rdgexg 6058 . . . 4 (𝑦 ∈ V → (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦) ∈ V)
111, 10ax-mp 7 . . 3 (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦) ∈ V
1211gen2 1380 . 2 𝑥𝑦(rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦) ∈ V
13 df-oexpi 6091 . . 3 𝑜 = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦))
1413mpt2fvex 5880 . 2 ((∀𝑥𝑦(rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦) ∈ V ∧ 𝐴𝑉𝐵𝑊) → (𝐴𝑜 𝐵) ∈ V)
1512, 14mp3an1 1256 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑜 𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1283  wcel 1434  Vcvv 2609  cmpt 3859  Oncon0 4146  cfv 4952  (class class class)co 5563  reccrdg 6038  1𝑜c1o 6078   ·𝑜 comu 6083  𝑜 coei 6084
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2611  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-suc 4154  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-irdg 6039  df-1o 6085  df-oadd 6089  df-omul 6090  df-oexpi 6091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator