ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oeiexg GIF version

Theorem oeiexg 6063
Description: Ordinal exponentiation is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
oeiexg ((𝐴𝑉𝐵𝑊) → (𝐴𝑜 𝐵) ∈ V)

Proof of Theorem oeiexg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2577 . . . 4 𝑦 ∈ V
2 1on 6038 . . . . . 6 1𝑜 ∈ On
32elexi 2584 . . . . 5 1𝑜 ∈ V
4 vex 2577 . . . . . . 7 𝑧 ∈ V
5 vex 2577 . . . . . . 7 𝑥 ∈ V
6 omexg 6061 . . . . . . 7 ((𝑧 ∈ V ∧ 𝑥 ∈ V) → (𝑧 ·𝑜 𝑥) ∈ V)
74, 5, 6mp2an 410 . . . . . 6 (𝑧 ·𝑜 𝑥) ∈ V
8 eqid 2056 . . . . . 6 (𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)) = (𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥))
97, 8fnmpti 5054 . . . . 5 (𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)) Fn V
103, 9rdgexg 6006 . . . 4 (𝑦 ∈ V → (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦) ∈ V)
111, 10ax-mp 7 . . 3 (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦) ∈ V
1211gen2 1355 . 2 𝑥𝑦(rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦) ∈ V
13 df-oexpi 6037 . . 3 𝑜 = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦))
1413mpt2fvex 5856 . 2 ((∀𝑥𝑦(rec((𝑧 ∈ V ↦ (𝑧 ·𝑜 𝑥)), 1𝑜)‘𝑦) ∈ V ∧ 𝐴𝑉𝐵𝑊) → (𝐴𝑜 𝐵) ∈ V)
1512, 14mp3an1 1230 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑜 𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wal 1257  wcel 1409  Vcvv 2574  cmpt 3845  Oncon0 4127  cfv 4929  (class class class)co 5539  reccrdg 5986  1𝑜c1o 6024   ·𝑜 comu 6029  𝑜 coei 6030
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-id 4057  df-iord 4130  df-on 4132  df-suc 4135  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-oadd 6035  df-omul 6036  df-oexpi 6037
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator