ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexgt0 GIF version

Theorem recexgt0 7644
Description: Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.)
Assertion
Ref Expression
recexgt0 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexgt0
StepHypRef Expression
1 ax-precex 7051 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
2 0re 7084 . . . 4 0 ∈ ℝ
3 ltxrlt 7143 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ 0 < 𝐴))
42, 3mpan 408 . . 3 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < 𝐴))
54pm5.32i 435 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
6 ltxrlt 7143 . . . . 5 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (0 < 𝑥 ↔ 0 < 𝑥))
72, 6mpan 408 . . . 4 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ 0 < 𝑥))
87anbi1d 446 . . 3 (𝑥 ∈ ℝ → ((0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) ↔ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)))
98rexbiia 2356 . 2 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) ↔ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
101, 5, 93imtr4i 194 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  wrex 2324   class class class wbr 3791  (class class class)co 5539  cr 6945  0cc0 6946  1c1 6947   < cltrr 6950   · cmul 6951   < clt 7118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-cnex 7032  ax-resscn 7033  ax-1re 7035  ax-addrcl 7038  ax-rnegex 7050  ax-precex 7051
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-xp 4378  df-pnf 7120  df-mnf 7121  df-ltxr 7123
This theorem is referenced by:  ltmul1  7656
  Copyright terms: Public domain W3C validator