ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul1 GIF version

Theorem ltmul1 7759
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltmul1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))

Proof of Theorem ltmul1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltmul1a 7758 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ 𝐴 < 𝐵) → (𝐴 · 𝐶) < (𝐵 · 𝐶))
21ex 113 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 → (𝐴 · 𝐶) < (𝐵 · 𝐶)))
3 recexgt0 7747 . . . 4 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))
433ad2ant3 962 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))
5 simpl1 942 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐴 ∈ ℝ)
6 simpl3l 994 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐶 ∈ ℝ)
75, 6remulcld 7211 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝐴 · 𝐶) ∈ ℝ)
8 simpl2 943 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐵 ∈ ℝ)
98, 6remulcld 7211 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝐵 · 𝐶) ∈ ℝ)
10 simprl 498 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝑥 ∈ ℝ)
11 simprrl 506 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 0 < 𝑥)
1210, 11jca 300 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
137, 9, 123jca 1119 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → ((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)))
14 ltmul1a 7758 . . . . . . . 8 ((((𝐴 · 𝐶) ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐴 · 𝐶) · 𝑥) < ((𝐵 · 𝐶) · 𝑥))
1513, 14sylan 277 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐴 · 𝐶) · 𝑥) < ((𝐵 · 𝐶) · 𝑥))
165recnd 7209 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐴 ∈ ℂ)
1716adantr 270 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐴 ∈ ℂ)
186recnd 7209 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐶 ∈ ℂ)
1918adantr 270 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐶 ∈ ℂ)
2010recnd 7209 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝑥 ∈ ℂ)
2120adantr 270 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝑥 ∈ ℂ)
2217, 19, 21mulassd 7204 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐴 · 𝐶) · 𝑥) = (𝐴 · (𝐶 · 𝑥)))
238recnd 7209 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → 𝐵 ∈ ℂ)
2423adantr 270 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐵 ∈ ℂ)
2524, 19, 21mulassd 7204 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → ((𝐵 · 𝐶) · 𝑥) = (𝐵 · (𝐶 · 𝑥)))
2615, 22, 253brtr3d 3822 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · (𝐶 · 𝑥)) < (𝐵 · (𝐶 · 𝑥)))
27 simprrr 507 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → (𝐶 · 𝑥) = 1)
2827adantr 270 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐶 · 𝑥) = 1)
2928oveq2d 5559 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · (𝐶 · 𝑥)) = (𝐴 · 1))
3028oveq2d 5559 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐵 · (𝐶 · 𝑥)) = (𝐵 · 1))
3126, 29, 303brtr3d 3822 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · 1) < (𝐵 · 1))
3217mulid1d 7198 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐴 · 1) = 𝐴)
3324mulid1d 7198 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → (𝐵 · 1) = 𝐵)
3431, 32, 333brtr3d 3822 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) ∧ (𝐴 · 𝐶) < (𝐵 · 𝐶)) → 𝐴 < 𝐵)
3534ex 113 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ (𝐶 · 𝑥) = 1))) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → 𝐴 < 𝐵))
364, 35rexlimddv 2482 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) < (𝐵 · 𝐶) → 𝐴 < 𝐵))
372, 36impbid 127 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  wrex 2350   class class class wbr 3793  (class class class)co 5543  cc 7041  cr 7042  0cc0 7043  1c1 7044   · cmul 7048   < clt 7215
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltadd 7154  ax-pre-mulgt0 7155
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-ltxr 7220  df-sub 7348  df-neg 7349
This theorem is referenced by:  lemul1  7760  reapmul1lem  7761  ltmul2  8001  ltdiv1  8013  ltdiv23  8037  recp1lt1  8044  ltmul1i  8065  ltmul1d  8896  flodddiv4t2lthalf  10481  qnumgt0  10720
  Copyright terms: Public domain W3C validator