ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recextlem1 GIF version

Theorem recextlem1 8412
Description: Lemma for recexap 8414. (Contributed by Eric Schmidt, 23-May-2007.)
Assertion
Ref Expression
recextlem1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))

Proof of Theorem recextlem1
StepHypRef Expression
1 simpl 108 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
2 ax-icn 7715 . . . . 5 i ∈ ℂ
3 mulcl 7747 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
42, 3mpan 420 . . . 4 (𝐵 ∈ ℂ → (i · 𝐵) ∈ ℂ)
54adantl 275 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
6 subcl 7961 . . . 4 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 − (i · 𝐵)) ∈ ℂ)
74, 6sylan2 284 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (i · 𝐵)) ∈ ℂ)
81, 5, 7adddird 7791 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · (𝐴 − (i · 𝐵))) + ((i · 𝐵) · (𝐴 − (i · 𝐵)))))
91, 1, 5subdid 8176 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))))
105, 1, 5subdid 8176 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · 𝐵) · (𝐴 − (i · 𝐵))) = (((i · 𝐵) · 𝐴) − ((i · 𝐵) · (i · 𝐵))))
11 mulcom 7749 . . . . . 6 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 · (i · 𝐵)) = ((i · 𝐵) · 𝐴))
124, 11sylan2 284 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (i · 𝐵)) = ((i · 𝐵) · 𝐴))
13 ixi 8345 . . . . . . . . . 10 (i · i) = -1
1413oveq1i 5784 . . . . . . . . 9 ((i · i) · (𝐵 · 𝐵)) = (-1 · (𝐵 · 𝐵))
15 mulcl 7747 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · 𝐵) ∈ ℂ)
1615mulm1d 8172 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · (𝐵 · 𝐵)) = -(𝐵 · 𝐵))
1714, 16syl5req 2185 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) = ((i · i) · (𝐵 · 𝐵)))
18 mul4 7894 . . . . . . . . 9 (((i ∈ ℂ ∧ i ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((i · i) · (𝐵 · 𝐵)) = ((i · 𝐵) · (i · 𝐵)))
192, 2, 18mpanl12 432 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · i) · (𝐵 · 𝐵)) = ((i · 𝐵) · (i · 𝐵)))
2017, 19eqtrd 2172 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) = ((i · 𝐵) · (i · 𝐵)))
2120anidms 394 . . . . . 6 (𝐵 ∈ ℂ → -(𝐵 · 𝐵) = ((i · 𝐵) · (i · 𝐵)))
2221adantl 275 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) = ((i · 𝐵) · (i · 𝐵)))
2312, 22oveq12d 5792 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵)) = (((i · 𝐵) · 𝐴) − ((i · 𝐵) · (i · 𝐵))))
2410, 23eqtr4d 2175 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · 𝐵) · (𝐴 − (i · 𝐵))) = ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵)))
259, 24oveq12d 5792 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐴 − (i · 𝐵))) + ((i · 𝐵) · (𝐴 − (i · 𝐵)))) = (((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))) + ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵))))
26 mulcl 7747 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴 · 𝐴) ∈ ℂ)
2726anidms 394 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · 𝐴) ∈ ℂ)
2827adantr 274 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐴) ∈ ℂ)
29 mulcl 7747 . . . . 5 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 · (i · 𝐵)) ∈ ℂ)
304, 29sylan2 284 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (i · 𝐵)) ∈ ℂ)
3115negcld 8060 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) ∈ ℂ)
3231anidms 394 . . . . 5 (𝐵 ∈ ℂ → -(𝐵 · 𝐵) ∈ ℂ)
3332adantl 275 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵 · 𝐵) ∈ ℂ)
3428, 30, 33npncand 8097 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))) + ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵))) = ((𝐴 · 𝐴) − -(𝐵 · 𝐵)))
3515anidms 394 . . . 4 (𝐵 ∈ ℂ → (𝐵 · 𝐵) ∈ ℂ)
36 subneg 8011 . . . 4 (((𝐴 · 𝐴) ∈ ℂ ∧ (𝐵 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐴) − -(𝐵 · 𝐵)) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3727, 35, 36syl2an 287 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐴) − -(𝐵 · 𝐵)) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
3834, 37eqtrd 2172 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐴) − (𝐴 · (i · 𝐵))) + ((𝐴 · (i · 𝐵)) − -(𝐵 · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
398, 25, 383eqtrd 2176 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  (class class class)co 5774  cc 7618  1c1 7621  ici 7622   + caddc 7623   · cmul 7625  cmin 7933  -cneg 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-resscn 7712  ax-1cn 7713  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7935  df-neg 7936
This theorem is referenced by:  recexap  8414
  Copyright terms: Public domain W3C validator