ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu8 GIF version

Theorem reu8 2759
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.)
Hypothesis
Ref Expression
rmo4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
reu8 (∃!𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem reu8
StepHypRef Expression
1 rmo4.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21cbvreuv 2552 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
3 reu6 2752 . 2 (∃!𝑦𝐴 𝜓 ↔ ∃𝑥𝐴𝑦𝐴 (𝜓𝑦 = 𝑥))
4 dfbi2 374 . . . . 5 ((𝜓𝑦 = 𝑥) ↔ ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)))
54ralbii 2347 . . . 4 (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ↔ ∀𝑦𝐴 ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)))
6 ancom 257 . . . . . 6 ((𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)) ↔ (∀𝑦𝐴 (𝜓𝑥 = 𝑦) ∧ 𝜑))
7 equcom 1609 . . . . . . . . . 10 (𝑥 = 𝑦𝑦 = 𝑥)
87imbi2i 219 . . . . . . . . 9 ((𝜓𝑥 = 𝑦) ↔ (𝜓𝑦 = 𝑥))
98ralbii 2347 . . . . . . . 8 (∀𝑦𝐴 (𝜓𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝜓𝑦 = 𝑥))
109a1i 9 . . . . . . 7 (𝑥𝐴 → (∀𝑦𝐴 (𝜓𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝜓𝑦 = 𝑥)))
11 biimt 234 . . . . . . . 8 (𝑥𝐴 → (𝜑 ↔ (𝑥𝐴𝜑)))
12 df-ral 2328 . . . . . . . . 9 (∀𝑦𝐴 (𝑦 = 𝑥𝜓) ↔ ∀𝑦(𝑦𝐴 → (𝑦 = 𝑥𝜓)))
13 bi2.04 241 . . . . . . . . . 10 ((𝑦𝐴 → (𝑦 = 𝑥𝜓)) ↔ (𝑦 = 𝑥 → (𝑦𝐴𝜓)))
1413albii 1375 . . . . . . . . 9 (∀𝑦(𝑦𝐴 → (𝑦 = 𝑥𝜓)) ↔ ∀𝑦(𝑦 = 𝑥 → (𝑦𝐴𝜓)))
15 vex 2577 . . . . . . . . . 10 𝑥 ∈ V
16 eleq1 2116 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1716, 1imbi12d 227 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
1817bicomd 133 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑦𝐴𝜓) ↔ (𝑥𝐴𝜑)))
1918equcoms 1610 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑦𝐴𝜓) ↔ (𝑥𝐴𝜑)))
2015, 19ceqsalv 2601 . . . . . . . . 9 (∀𝑦(𝑦 = 𝑥 → (𝑦𝐴𝜓)) ↔ (𝑥𝐴𝜑))
2112, 14, 203bitrri 200 . . . . . . . 8 ((𝑥𝐴𝜑) ↔ ∀𝑦𝐴 (𝑦 = 𝑥𝜓))
2211, 21syl6bb 189 . . . . . . 7 (𝑥𝐴 → (𝜑 ↔ ∀𝑦𝐴 (𝑦 = 𝑥𝜓)))
2310, 22anbi12d 450 . . . . . 6 (𝑥𝐴 → ((∀𝑦𝐴 (𝜓𝑥 = 𝑦) ∧ 𝜑) ↔ (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ∧ ∀𝑦𝐴 (𝑦 = 𝑥𝜓))))
246, 23syl5bb 185 . . . . 5 (𝑥𝐴 → ((𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)) ↔ (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ∧ ∀𝑦𝐴 (𝑦 = 𝑥𝜓))))
25 r19.26 2458 . . . . 5 (∀𝑦𝐴 ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)) ↔ (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ∧ ∀𝑦𝐴 (𝑦 = 𝑥𝜓)))
2624, 25syl6rbbr 192 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)) ↔ (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦))))
275, 26syl5bb 185 . . 3 (𝑥𝐴 → (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ↔ (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦))))
2827rexbiia 2356 . 2 (∃𝑥𝐴𝑦𝐴 (𝜓𝑦 = 𝑥) ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
292, 3, 283bitri 199 1 (∃!𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wal 1257  wcel 1409  wral 2323  wrex 2324  ∃!wreu 2325
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-clab 2043  df-cleq 2049  df-clel 2052  df-ral 2328  df-rex 2329  df-reu 2330  df-v 2576
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator