![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rsqrmo | GIF version |
Description: Uniqueness for the square root function. (Contributed by Jim Kingdon, 10-Aug-2021.) |
Ref | Expression |
---|---|
rsqrmo | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃*𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrl 502 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → 𝑥 ∈ ℝ) | |
2 | simplrr 503 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → 𝑦 ∈ ℝ) | |
3 | simprlr 505 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → 0 ≤ 𝑥) | |
4 | simprrr 507 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → 0 ≤ 𝑦) | |
5 | simprll 504 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → (𝑥↑2) = 𝐴) | |
6 | simprrl 506 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → (𝑦↑2) = 𝐴) | |
7 | 5, 6 | eqtr4d 2118 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → (𝑥↑2) = (𝑦↑2)) |
8 | 1, 2, 3, 4, 7 | sq11d 9812 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → 𝑥 = 𝑦) |
9 | 8 | ex 113 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦)) → 𝑥 = 𝑦)) |
10 | 9 | ralrimivva 2449 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ((((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦)) → 𝑥 = 𝑦)) |
11 | oveq1 5572 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2)) | |
12 | 11 | eqeq1d 2091 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥↑2) = 𝐴 ↔ (𝑦↑2) = 𝐴)) |
13 | breq2 3810 | . . . 4 ⊢ (𝑥 = 𝑦 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑦)) | |
14 | 12, 13 | anbi12d 457 | . . 3 ⊢ (𝑥 = 𝑦 → (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ↔ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) |
15 | 14 | rmo4 2795 | . 2 ⊢ (∃*𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ((((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦)) → 𝑥 = 𝑦)) |
16 | 10, 15 | sylibr 132 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃*𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 ∀wral 2353 ∃*wrmo 2356 class class class wbr 3806 (class class class)co 5565 ℝcr 7119 0cc0 7120 ≤ cle 7293 2c2 8233 ↑cexp 9649 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3914 ax-sep 3917 ax-nul 3925 ax-pow 3969 ax-pr 3993 ax-un 4217 ax-setind 4309 ax-iinf 4358 ax-cnex 7206 ax-resscn 7207 ax-1cn 7208 ax-1re 7209 ax-icn 7210 ax-addcl 7211 ax-addrcl 7212 ax-mulcl 7213 ax-mulrcl 7214 ax-addcom 7215 ax-mulcom 7216 ax-addass 7217 ax-mulass 7218 ax-distr 7219 ax-i2m1 7220 ax-0lt1 7221 ax-1rid 7222 ax-0id 7223 ax-rnegex 7224 ax-precex 7225 ax-cnre 7226 ax-pre-ltirr 7227 ax-pre-ltwlin 7228 ax-pre-lttrn 7229 ax-pre-apti 7230 ax-pre-ltadd 7231 ax-pre-mulgt0 7232 ax-pre-mulext 7233 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2613 df-sbc 2826 df-csb 2919 df-dif 2985 df-un 2987 df-in 2989 df-ss 2996 df-nul 3269 df-if 3370 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-iun 3701 df-br 3807 df-opab 3861 df-mpt 3862 df-tr 3897 df-id 4077 df-po 4080 df-iso 4081 df-iord 4150 df-on 4152 df-ilim 4153 df-suc 4155 df-iom 4361 df-xp 4398 df-rel 4399 df-cnv 4400 df-co 4401 df-dm 4402 df-rn 4403 df-res 4404 df-ima 4405 df-iota 4918 df-fun 4955 df-fn 4956 df-f 4957 df-f1 4958 df-fo 4959 df-f1o 4960 df-fv 4961 df-riota 5521 df-ov 5568 df-oprab 5569 df-mpt2 5570 df-1st 5820 df-2nd 5821 df-recs 5976 df-frec 6062 df-pnf 7294 df-mnf 7295 df-xr 7296 df-ltxr 7297 df-le 7298 df-sub 7425 df-neg 7426 df-reap 7819 df-ap 7826 df-div 7905 df-inn 8184 df-2 8242 df-n0 8433 df-z 8510 df-uz 8778 df-iseq 9599 df-iexp 9650 |
This theorem is referenced by: rersqreu 10140 |
Copyright terms: Public domain | W3C validator |