ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcied GIF version

Theorem sbcied 2851
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
Hypotheses
Ref Expression
sbcied.1 (𝜑𝐴𝑉)
sbcied.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
sbcied (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem sbcied
StepHypRef Expression
1 sbcied.1 . 2 (𝜑𝐴𝑉)
2 sbcied.2 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
3 nfv 1462 . 2 𝑥𝜑
4 nfvd 1463 . 2 (𝜑 → Ⅎ𝑥𝜒)
51, 2, 3, 4sbciedf 2850 1 (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  [wsbc 2816
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-sbc 2817
This theorem is referenced by:  sbcied2  2852  sbc2iedv  2887  sbc3ie  2888  sbcralt  2891  sbcrext  2892  euotd  4017  riota5f  5523
  Copyright terms: Public domain W3C validator