ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  serf GIF version

Theorem serf 10250
Description: An infinite series of complex terms is a function from to . (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
serf.1 𝑍 = (ℤ𝑀)
serf.2 (𝜑𝑀 ∈ ℤ)
serf.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
serf (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍

Proof of Theorem serf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 serf.1 . 2 𝑍 = (ℤ𝑀)
2 serf.2 . 2 (𝜑𝑀 ∈ ℤ)
3 serf.3 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4 addcl 7748 . . 3 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ)
54adantl 275 . 2 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ)
61, 2, 3, 5seqf 10237 1 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wf 5119  cfv 5123  (class class class)co 5774  cc 7621   + caddc 7626  cz 9057  cuz 9329  seqcseq 10221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-addcom 7723  ax-addass 7725  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-0id 7731  ax-rnegex 7732  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-ltadd 7739
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-inn 8724  df-n0 8981  df-z 9058  df-uz 9330  df-seqfrec 10222
This theorem is referenced by:  ser0f  10291  clim2ser  11109  clim2ser2  11110  isermulc2  11112  serf0  11124  fsum3cvg  11150  fsum3  11159  isumadd  11203  iserabs  11247  isumsplit  11263  cvgratnnlemseq  11298  cvgratnnlemrate  11302  cvgratnn  11303  mertenslem2  11308  mertensabs  11309  efcvgfsum  11376  efcj  11382  cvgcmp2n  13231
  Copyright terms: Public domain W3C validator