ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslem2 GIF version

Theorem mertenslem2 11305
Description: Lemma for mertensabs 11306. (Contributed by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
mertens.1 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
mertens.2 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
mertens.3 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
mertens.4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertens.5 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertens.6 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
mertens.7 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
mertens.8 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertens.9 (𝜑𝐸 ∈ ℝ+)
mertens.10 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
mertens.11 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
Assertion
Ref Expression
mertenslem2 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Distinct variable groups:   𝑗,𝑚,𝑛,𝑠,𝑦,𝑧,𝐵   𝑗,𝑘,𝐺,𝑚,𝑛,𝑠,𝑦,𝑧   𝜑,𝑗,𝑘,𝑚,𝑦,𝑧   𝐴,𝑘,𝑚,𝑛,𝑠,𝑦   𝑗,𝐸,𝑘,𝑚,𝑛,𝑠,𝑦,𝑧   𝑗,𝐾,𝑘,𝑚,𝑛,𝑠,𝑦,𝑧   𝑗,𝐹,𝑚,𝑛,𝑦   𝜓,𝑗,𝑘,𝑚,𝑛,𝑦,𝑧   𝑇,𝑗,𝑘,𝑚,𝑛,𝑦,𝑧   𝑘,𝐻,𝑚,𝑦   𝜑,𝑛,𝑠
Allowed substitution hints:   𝜓(𝑠)   𝐴(𝑧,𝑗)   𝐵(𝑘)   𝑇(𝑠)   𝐹(𝑧,𝑘,𝑠)   𝐻(𝑧,𝑗,𝑛,𝑠)

Proof of Theorem mertenslem2
Dummy variables 𝑡 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9361 . . 3 ℕ = (ℤ‘1)
2 1zzd 9081 . . 3 (𝜑 → 1 ∈ ℤ)
3 mertens.9 . . . . 5 (𝜑𝐸 ∈ ℝ+)
43rphalfcld 9496 . . . 4 (𝜑 → (𝐸 / 2) ∈ ℝ+)
5 nn0uz 9360 . . . . . 6 0 = (ℤ‘0)
6 0zd 9066 . . . . . 6 (𝜑 → 0 ∈ ℤ)
7 eqidd 2140 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (𝐾𝑗))
8 mertens.2 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
9 mertens.3 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
109abscld 10953 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
118, 10eqeltrd 2216 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) ∈ ℝ)
12 mertens.7 . . . . . 6 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
135, 6, 7, 11, 12isumrecl 11198 . . . . 5 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
149absge0d 10956 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
1514, 8breqtrrd 3956 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (𝐾𝑗))
165, 6, 7, 11, 12, 15isumge0 11199 . . . . 5 (𝜑 → 0 ≤ Σ𝑗 ∈ ℕ0 (𝐾𝑗))
1713, 16ge0p1rpd 9514 . . . 4 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ+)
184, 17rpdivcld 9501 . . 3 (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ+)
19 eqidd 2140 . . 3 ((𝜑𝑚 ∈ ℕ) → (seq0( + , 𝐺)‘𝑚) = (seq0( + , 𝐺)‘𝑚))
20 mertens.4 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
21 mertens.5 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
22 mertens.8 . . . 4 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
235, 6, 20, 21, 22isumclim2 11191 . . 3 (𝜑 → seq0( + , 𝐺) ⇝ Σ𝑘 ∈ ℕ0 𝐵)
241, 2, 18, 19, 23climi2 11057 . 2 (𝜑 → ∃𝑠 ∈ ℕ ∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
25 eluznn 9394 . . . . . . . 8 ((𝑠 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑠)) → 𝑚 ∈ ℕ)
2620, 21eqeltrd 2216 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
275, 6, 26serf 10247 . . . . . . . . . . . 12 (𝜑 → seq0( + , 𝐺):ℕ0⟶ℂ)
28 nnnn0 8984 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
29 ffvelrn 5553 . . . . . . . . . . . 12 ((seq0( + , 𝐺):ℕ0⟶ℂ ∧ 𝑚 ∈ ℕ0) → (seq0( + , 𝐺)‘𝑚) ∈ ℂ)
3027, 28, 29syl2an 287 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (seq0( + , 𝐺)‘𝑚) ∈ ℂ)
315, 6, 20, 21, 22isumcl 11194 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
3231adantr 274 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
3330, 32abssubd 10965 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) = (abs‘(Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚))))
34 eqid 2139 . . . . . . . . . . . . . 14 (ℤ‘(𝑚 + 1)) = (ℤ‘(𝑚 + 1))
3528adantl 275 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
36 peano2nn0 9017 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
3735, 36syl 14 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ0)
3837nn0zd 9171 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℤ)
39 simpll 518 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝜑)
40 eluznn0 9393 . . . . . . . . . . . . . . . 16 (((𝑚 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ0)
4137, 40sylan 281 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ0)
4239, 41, 20syl2anc 408 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝐺𝑘) = 𝐵)
4339, 41, 21syl2anc 408 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝐵 ∈ ℂ)
4422adantr 274 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → seq0( + , 𝐺) ∈ dom ⇝ )
4526adantlr 468 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
465, 37, 45iserex 11108 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq(𝑚 + 1)( + , 𝐺) ∈ dom ⇝ ))
4744, 46mpbid 146 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → seq(𝑚 + 1)( + , 𝐺) ∈ dom ⇝ )
4834, 38, 42, 43, 47isumcl 11194 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵 ∈ ℂ)
4930, 48pncan2d 8075 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵) − (seq0( + , 𝐺)‘𝑚)) = Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵)
5020adantlr 468 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
5121adantlr 468 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
525, 34, 37, 50, 51, 44isumsplit 11260 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0 𝐵 = (Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵))
53 nncn 8728 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
5453adantl 275 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
55 ax-1cn 7713 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
56 pncan 7968 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) − 1) = 𝑚)
5754, 55, 56sylancl 409 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) − 1) = 𝑚)
5857oveq2d 5790 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → (0...((𝑚 + 1) − 1)) = (0...𝑚))
5958sumeq1d 11135 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 = Σ𝑘 ∈ (0...𝑚)𝐵)
60 elnn0uz 9363 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
6160, 50sylan2br 286 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘0)) → (𝐺𝑘) = 𝐵)
6235, 5eleqtrdi 2232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ (ℤ‘0))
6360, 51sylan2br 286 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘0)) → 𝐵 ∈ ℂ)
6461, 62, 63fsum3ser 11166 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...𝑚)𝐵 = (seq0( + , 𝐺)‘𝑚))
6559, 64eqtrd 2172 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 = (seq0( + , 𝐺)‘𝑚))
6665oveq1d 5789 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵) = ((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵))
6752, 66eqtrd 2172 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0 𝐵 = ((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵))
6867oveq1d 5789 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚)) = (((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵) − (seq0( + , 𝐺)‘𝑚)))
6942sumeq2dv 11137 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵)
7049, 68, 693eqtr4d 2182 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚)) = Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘))
7170fveq2d 5425 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (abs‘(Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚))) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)))
7233, 71eqtrd 2172 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)))
7372breq1d 3939 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7425, 73sylan2 284 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑠))) → ((abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7574anassrs 397 . . . . . 6 (((𝜑𝑠 ∈ ℕ) ∧ 𝑚 ∈ (ℤ𝑠)) → ((abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7675ralbidva 2433 . . . . 5 ((𝜑𝑠 ∈ ℕ) → (∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
77 fvoveq1 5797 . . . . . . . . 9 (𝑚 = 𝑛 → (ℤ‘(𝑚 + 1)) = (ℤ‘(𝑛 + 1)))
7877sumeq1d 11135 . . . . . . . 8 (𝑚 = 𝑛 → Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))
7978fveq2d 5425 . . . . . . 7 (𝑚 = 𝑛 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
8079breq1d 3939 . . . . . 6 (𝑚 = 𝑛 → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
8180cbvralv 2654 . . . . 5 (∀𝑚 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
8276, 81syl6bb 195 . . . 4 ((𝜑𝑠 ∈ ℕ) → (∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
83 mertens.11 . . . . . 6 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
84 0zd 9066 . . . . . . . . . 10 ((𝜑𝜓) → 0 ∈ ℤ)
854adantr 274 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝐸 / 2) ∈ ℝ+)
8683simplbi 272 . . . . . . . . . . . . . 14 (𝜓𝑠 ∈ ℕ)
8786adantl 275 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑠 ∈ ℕ)
8887nnrpd 9482 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑠 ∈ ℝ+)
8985, 88rpdivcld 9501 . . . . . . . . . . 11 ((𝜑𝜓) → ((𝐸 / 2) / 𝑠) ∈ ℝ+)
9087nnzd 9172 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝑠 ∈ ℤ)
91 1zzd 9081 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 1 ∈ ℤ)
9290, 91zsubcld 9178 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝑠 − 1) ∈ ℤ)
9384, 92fzfigd 10204 . . . . . . . . . . . . 13 ((𝜑𝜓) → (0...(𝑠 − 1)) ∈ Fin)
94 eqid 2139 . . . . . . . . . . . . . . 15 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
95 elfznn0 9894 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0...(𝑠 − 1)) → 𝑛 ∈ ℕ0)
9695adantl 275 . . . . . . . . . . . . . . . . 17 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → 𝑛 ∈ ℕ0)
97 peano2nn0 9017 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
9896, 97syl 14 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑛 + 1) ∈ ℕ0)
9998nn0zd 9171 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑛 + 1) ∈ ℤ)
100 eqidd 2140 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) = (𝐺𝑘))
101 simplll 522 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝜑)
102 eluznn0 9393 . . . . . . . . . . . . . . . . 17 (((𝑛 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
10398, 102sylan 281 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
104101, 103, 26syl2anc 408 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) ∈ ℂ)
10522ad2antrr 479 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → seq0( + , 𝐺) ∈ dom ⇝ )
106 simpll 518 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → 𝜑)
107106, 26sylan 281 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
1085, 98, 107iserex 11108 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ ))
109105, 108mpbid 146 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ )
11094, 99, 100, 104, 109isumcl 11194 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) ∈ ℂ)
111110abscld 10953 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ∈ ℝ)
11293, 111fsumrecl 11170 . . . . . . . . . . . 12 ((𝜑𝜓) → Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ∈ ℝ)
113 0red 7767 . . . . . . . . . . . . 13 ((𝜑𝜓) → 0 ∈ ℝ)
114 nnnn0 8984 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
115114, 20sylan2 284 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = 𝐵)
116114, 21sylan2 284 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
117 1nn0 8993 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
118117a1i 9 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℕ0)
1195, 118, 26iserex 11108 . . . . . . . . . . . . . . . . 17 (𝜑 → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq1( + , 𝐺) ∈ dom ⇝ ))
12022, 119mpbid 146 . . . . . . . . . . . . . . . 16 (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ )
1211, 2, 115, 116, 120isumcl 11194 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ ℕ 𝐵 ∈ ℂ)
122121adantr 274 . . . . . . . . . . . . . 14 ((𝜑𝜓) → Σ𝑘 ∈ ℕ 𝐵 ∈ ℂ)
123122abscld 10953 . . . . . . . . . . . . 13 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ ℝ)
124122absge0d 10956 . . . . . . . . . . . . 13 ((𝜑𝜓) → 0 ≤ (abs‘Σ𝑘 ∈ ℕ 𝐵))
12520adantlr 468 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
12621adantlr 468 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
12722adantr 274 . . . . . . . . . . . . . 14 ((𝜑𝜓) → seq0( + , 𝐺) ∈ dom ⇝ )
128 mertens.10 . . . . . . . . . . . . . 14 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
129 nnm1nn0 9018 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℕ → (𝑠 − 1) ∈ ℕ0)
13087, 129syl 14 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → (𝑠 − 1) ∈ ℕ0)
131130, 5eleqtrdi 2232 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (𝑠 − 1) ∈ (ℤ‘0))
132 eluzfz1 9811 . . . . . . . . . . . . . . . . 17 ((𝑠 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑠 − 1)))
133131, 132syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 0 ∈ (0...(𝑠 − 1)))
134115sumeq2dv 11137 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ𝑘 ∈ ℕ (𝐺𝑘) = Σ𝑘 ∈ ℕ 𝐵)
135134adantr 274 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → Σ𝑘 ∈ ℕ (𝐺𝑘) = Σ𝑘 ∈ ℕ 𝐵)
136135fveq2d 5425 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘)) = (abs‘Σ𝑘 ∈ ℕ 𝐵))
137136eqcomd 2145 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘)))
138 fv0p1e1 8835 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 0 → (ℤ‘(𝑛 + 1)) = (ℤ‘1))
139138, 1syl6eqr 2190 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 0 → (ℤ‘(𝑛 + 1)) = ℕ)
140139sumeq1d 11135 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑘 ∈ ℕ (𝐺𝑘))
141140fveq2d 5425 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘)))
142141rspceeqv 2807 . . . . . . . . . . . . . . . 16 ((0 ∈ (0...(𝑠 − 1)) ∧ (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘))) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
143133, 137, 142syl2anc 408 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
144 eqeq1 2146 . . . . . . . . . . . . . . . . . 18 (𝑧 = (abs‘Σ𝑘 ∈ ℕ 𝐵) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
145144rexbidv 2438 . . . . . . . . . . . . . . . . 17 (𝑧 = (abs‘Σ𝑘 ∈ ℕ 𝐵) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
146145, 128elab2g 2831 . . . . . . . . . . . . . . . 16 ((abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ ℝ → ((abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
147123, 146syl 14 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → ((abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
148143, 147mpbird 166 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇)
149125, 126, 127, 128, 148, 87mertenslemub 11303 . . . . . . . . . . . . 13 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
150113, 123, 112, 124, 149letrd 7886 . . . . . . . . . . . 12 ((𝜑𝜓) → 0 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
151112, 150ge0p1rpd 9514 . . . . . . . . . . 11 ((𝜑𝜓) → (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1) ∈ ℝ+)
15289, 151rpdivcld 9501 . . . . . . . . . 10 ((𝜑𝜓) → (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)) ∈ ℝ+)
153 simpr 109 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
154 fveq2 5421 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (𝐾𝑗) = (𝐾𝑚))
155154eleq1d 2208 . . . . . . . . . . . 12 (𝑗 = 𝑚 → ((𝐾𝑗) ∈ ℝ ↔ (𝐾𝑚) ∈ ℝ))
15611ralrimiva 2505 . . . . . . . . . . . . 13 (𝜑 → ∀𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
157156ad2antrr 479 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑚 ∈ ℕ0) → ∀𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
158155, 157, 153rspcdva 2794 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑚 ∈ ℕ0) → (𝐾𝑚) ∈ ℝ)
159 fveq2 5421 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐾𝑛) = (𝐾𝑚))
160 eqid 2139 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐾𝑛))
161159, 160fvmptg 5497 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (𝐾𝑚) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑚) = (𝐾𝑚))
162153, 158, 161syl2anc 408 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑚) = (𝐾𝑚))
163 nn0ex 8983 . . . . . . . . . . . . . 14 0 ∈ V
164163mptex 5646 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ∈ V
165164a1i 9 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ∈ V)
16660biimpri 132 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℕ0)
167 fveq2 5421 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑘 → (𝐾𝑗) = (𝐾𝑘))
168167eleq1d 2208 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → ((𝐾𝑗) ∈ ℝ ↔ (𝐾𝑘) ∈ ℝ))
169156adantr 274 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → ∀𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
170 simpr 109 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
171168, 169, 170rspcdva 2794 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝐾𝑘) ∈ ℝ)
17260, 171sylan2br 286 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘0)) → (𝐾𝑘) ∈ ℝ)
173 fveq2 5421 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝐾𝑛) = (𝐾𝑘))
174173, 160fvmptg 5497 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0 ∧ (𝐾𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑘) = (𝐾𝑘))
175166, 172, 174syl2an2 583 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑘) = (𝐾𝑘))
176175, 172eqeltrd 2216 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑘) ∈ ℝ)
177 elnn0uz 9363 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0𝑗 ∈ (ℤ‘0))
178 simpr 109 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
179 fveq2 5421 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝐾𝑛) = (𝐾𝑗))
180179, 160fvmptg 5497 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℕ0 ∧ (𝐾𝑗) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (𝐾𝑗))
181178, 11, 180syl2anc 408 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (𝐾𝑗))
182177, 181sylan2br 286 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (𝐾𝑗))
183 readdcl 7746 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑘 + 𝑦) ∈ ℝ)
184183adantl 275 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑘 + 𝑦) ∈ ℝ)
1856, 176, 182, 184seq3feq 10245 . . . . . . . . . . . . 13 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐾𝑛))) = seq0( + , 𝐾))
186185, 12eqeltrd 2216 . . . . . . . . . . . 12 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐾𝑛))) ∈ dom ⇝ )
187181, 11eqeltrd 2216 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) ∈ ℝ)
188187recnd 7794 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) ∈ ℂ)
1895, 6, 165, 186, 188serf0 11121 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ⇝ 0)
190189adantr 274 . . . . . . . . . 10 ((𝜑𝜓) → (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ⇝ 0)
1915, 84, 152, 162, 190climi0 11058 . . . . . . . . 9 ((𝜑𝜓) → ∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)))
192 fveq2 5421 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑎 → (𝐺𝑘) = (𝐺𝑎))
193192cbvsumv 11130 . . . . . . . . . . . . . . . . 17 Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)
194193fveq2i 5424 . . . . . . . . . . . . . . . 16 (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎))
195194a1i 9 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0...(𝑠 − 1)) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
196195sumeq2i 11133 . . . . . . . . . . . . . 14 Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎))
197196oveq1i 5784 . . . . . . . . . . . . 13 𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1) = (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)
198197oveq2i 5785 . . . . . . . . . . . 12 (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)) = (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))
199198breq2i 3937 . . . . . . . . . . 11 ((abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)) ↔ (abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))
200199ralbii 2441 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))
201200rexbii 2442 . . . . . . . . 9 (∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)) ↔ ∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))
202191, 201sylib 121 . . . . . . . 8 ((𝜑𝜓) → ∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))
203 simplll 522 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → 𝜑)
204 eluznn0 9393 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)) → 𝑚 ∈ ℕ0)
205204adantll 467 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → 𝑚 ∈ ℕ0)
20611, 15absidd 10939 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (abs‘(𝐾𝑗)) = (𝐾𝑗))
207206ralrimiva 2505 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑗 ∈ ℕ0 (abs‘(𝐾𝑗)) = (𝐾𝑗))
208154fveq2d 5425 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (abs‘(𝐾𝑗)) = (abs‘(𝐾𝑚)))
209208, 154eqeq12d 2154 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → ((abs‘(𝐾𝑗)) = (𝐾𝑗) ↔ (abs‘(𝐾𝑚)) = (𝐾𝑚)))
210209rspccva 2788 . . . . . . . . . . . . . . 15 ((∀𝑗 ∈ ℕ0 (abs‘(𝐾𝑗)) = (𝐾𝑗) ∧ 𝑚 ∈ ℕ0) → (abs‘(𝐾𝑚)) = (𝐾𝑚))
211207, 210sylan 281 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → (abs‘(𝐾𝑚)) = (𝐾𝑚))
212203, 205, 211syl2anc 408 . . . . . . . . . . . . 13 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → (abs‘(𝐾𝑚)) = (𝐾𝑚))
213212breq1d 3939 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → ((abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) ↔ (𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))))
214213ralbidva 2433 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))))
215 nfv 1508 . . . . . . . . . . . 12 𝑚(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))
216 nfcv 2281 . . . . . . . . . . . . 13 𝑛(𝐾𝑚)
217 nfcv 2281 . . . . . . . . . . . . 13 𝑛 <
218 nfcv 2281 . . . . . . . . . . . . . 14 𝑛((𝐸 / 2) / 𝑠)
219 nfcv 2281 . . . . . . . . . . . . . 14 𝑛 /
220 nfcv 2281 . . . . . . . . . . . . . . . 16 𝑛(0...(𝑠 − 1))
221220nfsum1 11125 . . . . . . . . . . . . . . 15 𝑛Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎))
222 nfcv 2281 . . . . . . . . . . . . . . 15 𝑛 +
223 nfcv 2281 . . . . . . . . . . . . . . 15 𝑛1
224221, 222, 223nfov 5801 . . . . . . . . . . . . . 14 𝑛𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)
225218, 219, 224nfov 5801 . . . . . . . . . . . . 13 𝑛(((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))
226216, 217, 225nfbr 3974 . . . . . . . . . . . 12 𝑛(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))
227159breq1d 3939 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) ↔ (𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))))
228215, 226, 227cbvral 2650 . . . . . . . . . . 11 (∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))
229214, 228syl6bbr 197 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))))
230 simpll 518 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → 𝜑)
231 mertens.1 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
232230, 231sylan 281 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
233230, 8sylan 281 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
234230, 9sylan 281 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
235230, 20sylan 281 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
236230, 21sylan 281 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
237 mertens.6 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
238230, 237sylan 281 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
23912ad2antrr 479 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → seq0( + , 𝐾) ∈ dom ⇝ )
24022ad2antrr 479 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → seq0( + , 𝐺) ∈ dom ⇝ )
2413ad2antrr 479 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → 𝐸 ∈ ℝ+)
242196, 112eqeltrrid 2227 . . . . . . . . . . . . 13 ((𝜑𝜓) → Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) ∈ ℝ)
243242adantr 274 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) ∈ ℝ)
244228anbi2i 452 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))) ↔ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))))
245244anbi2i 452 . . . . . . . . . . . . . 14 ((𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ↔ (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))))
246245biimpi 119 . . . . . . . . . . . . 13 ((𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))))
247246adantll 467 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))))
248150, 196breqtrdi 3969 . . . . . . . . . . . . 13 ((𝜑𝜓) → 0 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
249248adantr 274 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → 0 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
250 simpr 109 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑤𝑇) ∧ 𝑎 ∈ ℕ0) → 𝑎 ∈ ℕ0)
25120ralrimiva 2505 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘 ∈ ℕ0 (𝐺𝑘) = 𝐵)
252251ad3antrrr 483 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑤𝑇) ∧ 𝑎 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (𝐺𝑘) = 𝐵)
253 nfcsb1v 3035 . . . . . . . . . . . . . . . . . 18 𝑘𝑎 / 𝑘𝐵
254253nfeq2 2293 . . . . . . . . . . . . . . . . 17 𝑘(𝐺𝑎) = 𝑎 / 𝑘𝐵
255 csbeq1a 3012 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑎𝐵 = 𝑎 / 𝑘𝐵)
256192, 255eqeq12d 2154 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑎 → ((𝐺𝑘) = 𝐵 ↔ (𝐺𝑎) = 𝑎 / 𝑘𝐵))
257254, 256rspc 2783 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0 → (∀𝑘 ∈ ℕ0 (𝐺𝑘) = 𝐵 → (𝐺𝑎) = 𝑎 / 𝑘𝐵))
258250, 252, 257sylc 62 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑤𝑇) ∧ 𝑎 ∈ ℕ0) → (𝐺𝑎) = 𝑎 / 𝑘𝐵)
25921ralrimiva 2505 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
260259ad3antrrr 483 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑤𝑇) ∧ 𝑎 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
261253nfel1 2292 . . . . . . . . . . . . . . . . 17 𝑘𝑎 / 𝑘𝐵 ∈ ℂ
262255eleq1d 2208 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑎 → (𝐵 ∈ ℂ ↔ 𝑎 / 𝑘𝐵 ∈ ℂ))
263261, 262rspc 2783 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0 → (∀𝑘 ∈ ℕ0 𝐵 ∈ ℂ → 𝑎 / 𝑘𝐵 ∈ ℂ))
264250, 260, 263sylc 62 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑤𝑇) ∧ 𝑎 ∈ ℕ0) → 𝑎 / 𝑘𝐵 ∈ ℂ)
26522ad2antrr 479 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑤𝑇) → seq0( + , 𝐺) ∈ dom ⇝ )
266194eqeq2i 2150 . . . . . . . . . . . . . . . . . 18 (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ 𝑧 = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
267266rexbii 2442 . . . . . . . . . . . . . . . . 17 (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
268267abbii 2255 . . . . . . . . . . . . . . . 16 {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))} = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎))}
269128, 268eqtri 2160 . . . . . . . . . . . . . . 15 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎))}
270 simpr 109 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑤𝑇) → 𝑤𝑇)
27187adantr 274 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑤𝑇) → 𝑠 ∈ ℕ)
272258, 264, 265, 269, 270, 271mertenslemub 11303 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑤𝑇) → 𝑤 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
273272ralrimiva 2505 . . . . . . . . . . . . 13 ((𝜑𝜓) → ∀𝑤𝑇 𝑤 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
274273adantr 274 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → ∀𝑤𝑇 𝑤 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
275232, 233, 234, 235, 236, 238, 239, 240, 241, 128, 83, 243, 247, 249, 274mertenslemi1 11304 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
276275expr 372 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
277229, 276sylbid 149 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
278277rexlimdva 2549 . . . . . . . 8 ((𝜑𝜓) → (∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
279202, 278mpd 13 . . . . . . 7 ((𝜑𝜓) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
280279ex 114 . . . . . 6 (𝜑 → (𝜓 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
28183, 280syl5bir 152 . . . . 5 (𝜑 → ((𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
282281expdimp 257 . . . 4 ((𝜑𝑠 ∈ ℕ) → (∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
28382, 282sylbid 149 . . 3 ((𝜑𝑠 ∈ ℕ) → (∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
284283rexlimdva 2549 . 2 (𝜑 → (∃𝑠 ∈ ℕ ∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
28524, 284mpd 13 1 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  {cab 2125  wral 2416  wrex 2417  Vcvv 2686  csb 3003   class class class wbr 3929  cmpt 3989  dom cdm 4539  wf 5119  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  cmin 7933   / cdiv 8432  cn 8720  2c2 8771  0cn0 8977  cuz 9326  +crp 9441  ...cfz 9790  seqcseq 10218  abscabs 10769  cli 11047  Σcsu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  mertensabs  11306
  Copyright terms: Public domain W3C validator