ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftf GIF version

Theorem shftf 9919
Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftf ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem shftf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffn 5097 . . 3 (𝐹:𝐵𝐶𝐹 Fn 𝐵)
2 shftfval.1 . . . 4 𝐹 ∈ V
32shftfn 9913 . . 3 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
41, 3sylan 277 . 2 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
5 oveq1 5570 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴) = (𝑦𝐴))
65eleq1d 2151 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝐴) ∈ 𝐵 ↔ (𝑦𝐴) ∈ 𝐵))
76elrab 2757 . . . 4 (𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ↔ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵))
8 simpr 108 . . . . . 6 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
9 simpl 107 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵) → 𝑦 ∈ ℂ)
102shftval 9914 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦𝐴)))
118, 9, 10syl2an 283 . . . . 5 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦𝐴)))
12 simpl 107 . . . . . 6 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → 𝐹:𝐵𝐶)
13 simpr 108 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵) → (𝑦𝐴) ∈ 𝐵)
14 ffvelrn 5352 . . . . . 6 ((𝐹:𝐵𝐶 ∧ (𝑦𝐴) ∈ 𝐵) → (𝐹‘(𝑦𝐴)) ∈ 𝐶)
1512, 13, 14syl2an 283 . . . . 5 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵)) → (𝐹‘(𝑦𝐴)) ∈ 𝐶)
1611, 15eqeltrd 2159 . . . 4 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)
177, 16sylan2b 281 . . 3 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)
1817ralrimiva 2439 . 2 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)
19 ffnfv 5375 . 2 ((𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶 ↔ ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ∧ ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶))
204, 18, 19sylanbrc 408 1 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  wral 2353  {crab 2357  Vcvv 2610   Fn wfn 4947  wf 4948  cfv 4952  (class class class)co 5563  cc 7093  cmin 7398   shift cshi 9903
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-resscn 7182  ax-1cn 7183  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-addcom 7190  ax-addass 7192  ax-distr 7194  ax-i2m1 7195  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-sub 7400  df-shft 9904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator