Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrd GIF version

Theorem sseqtrd 3036
 Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrd.1 (𝜑𝐴𝐵)
sseqtrd.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
sseqtrd (𝜑𝐴𝐶)

Proof of Theorem sseqtrd
StepHypRef Expression
1 sseqtrd.1 . 2 (𝜑𝐴𝐵)
2 sseqtrd.2 . . 3 (𝜑𝐵 = 𝐶)
32sseq2d 3028 . 2 (𝜑 → (𝐴𝐵𝐴𝐶))
41, 3mpbid 145 1 (𝜑𝐴𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1285   ⊆ wss 2974 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-in 2980  df-ss 2987 This theorem is referenced by:  sseqtr4d  3037  resasplitss  5100  nnaword2  6153  erssxp  6195  phpm  6400  ioodisj  9091
 Copyright terms: Public domain W3C validator