Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfalllemn GIF version

Theorem nninfalllemn 13202
Description: Lemma for nninfall 13204. Mapping of a natural number to an element of . (Contributed by Jim Kingdon, 4-Aug-2022.)
Hypotheses
Ref Expression
nninfalllemn.p (𝜑𝑃 ∈ ℕ)
nninfalllemn.n (𝜑𝑁 ∈ ω)
nninfalllemn.1 (𝜑 → ∀𝑥𝑁 (𝑃𝑥) = 1o)
nninfalllemn.0 (𝜑 → (𝑃𝑁) = ∅)
Assertion
Ref Expression
nninfalllemn (𝜑𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
Distinct variable groups:   𝑖,𝑁   𝑥,𝑁   𝑥,𝑃   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑖)

Proof of Theorem nninfalllemn
Dummy variables 𝑗 𝑘 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfalllemn.p . . . 4 (𝜑𝑃 ∈ ℕ)
2 nninff 13198 . . . 4 (𝑃 ∈ ℕ𝑃:ω⟶2o)
31, 2syl 14 . . 3 (𝜑𝑃:ω⟶2o)
43ffnd 5273 . 2 (𝜑𝑃 Fn ω)
5 1lt2o 6339 . . . . . 6 1o ∈ 2o
65a1i 9 . . . . 5 ((𝜑𝑖 ∈ ω) → 1o ∈ 2o)
7 0lt2o 6338 . . . . . 6 ∅ ∈ 2o
87a1i 9 . . . . 5 ((𝜑𝑖 ∈ ω) → ∅ ∈ 2o)
9 simpr 109 . . . . . 6 ((𝜑𝑖 ∈ ω) → 𝑖 ∈ ω)
10 nninfalllemn.n . . . . . . 7 (𝜑𝑁 ∈ ω)
1110adantr 274 . . . . . 6 ((𝜑𝑖 ∈ ω) → 𝑁 ∈ ω)
12 nndcel 6396 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑖𝑁)
139, 11, 12syl2anc 408 . . . . 5 ((𝜑𝑖 ∈ ω) → DECID 𝑖𝑁)
146, 8, 13ifcldcd 3507 . . . 4 ((𝜑𝑖 ∈ ω) → if(𝑖𝑁, 1o, ∅) ∈ 2o)
1514ralrimiva 2505 . . 3 (𝜑 → ∀𝑖 ∈ ω if(𝑖𝑁, 1o, ∅) ∈ 2o)
16 eqid 2139 . . . 4 (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))
1716fnmpt 5249 . . 3 (∀𝑖 ∈ ω if(𝑖𝑁, 1o, ∅) ∈ 2o → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) Fn ω)
1815, 17syl 14 . 2 (𝜑 → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) Fn ω)
19 fveq2 5421 . . . . . . 7 (𝑤 = ∅ → (𝑃𝑤) = (𝑃‘∅))
20 eleq1 2202 . . . . . . . 8 (𝑤 = ∅ → (𝑤𝑁 ↔ ∅ ∈ 𝑁))
2120ifbid 3493 . . . . . . 7 (𝑤 = ∅ → if(𝑤𝑁, 1o, ∅) = if(∅ ∈ 𝑁, 1o, ∅))
2219, 21eqeq12d 2154 . . . . . 6 (𝑤 = ∅ → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅)))
2322imbi2d 229 . . . . 5 (𝑤 = ∅ → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))))
24 fveq2 5421 . . . . . . 7 (𝑤 = 𝑘 → (𝑃𝑤) = (𝑃𝑘))
25 eleq1w 2200 . . . . . . . 8 (𝑤 = 𝑘 → (𝑤𝑁𝑘𝑁))
2625ifbid 3493 . . . . . . 7 (𝑤 = 𝑘 → if(𝑤𝑁, 1o, ∅) = if(𝑘𝑁, 1o, ∅))
2724, 26eqeq12d 2154 . . . . . 6 (𝑤 = 𝑘 → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)))
2827imbi2d 229 . . . . 5 (𝑤 = 𝑘 → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃𝑘) = if(𝑘𝑁, 1o, ∅))))
29 fveq2 5421 . . . . . . 7 (𝑤 = suc 𝑘 → (𝑃𝑤) = (𝑃‘suc 𝑘))
30 eleq1 2202 . . . . . . . 8 (𝑤 = suc 𝑘 → (𝑤𝑁 ↔ suc 𝑘𝑁))
3130ifbid 3493 . . . . . . 7 (𝑤 = suc 𝑘 → if(𝑤𝑁, 1o, ∅) = if(suc 𝑘𝑁, 1o, ∅))
3229, 31eqeq12d 2154 . . . . . 6 (𝑤 = suc 𝑘 → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅)))
3332imbi2d 229 . . . . 5 (𝑤 = suc 𝑘 → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))))
34 fveq2 5421 . . . . . . 7 (𝑤 = 𝑗 → (𝑃𝑤) = (𝑃𝑗))
35 eleq1w 2200 . . . . . . . 8 (𝑤 = 𝑗 → (𝑤𝑁𝑗𝑁))
3635ifbid 3493 . . . . . . 7 (𝑤 = 𝑗 → if(𝑤𝑁, 1o, ∅) = if(𝑗𝑁, 1o, ∅))
3734, 36eqeq12d 2154 . . . . . 6 (𝑤 = 𝑗 → ((𝑃𝑤) = if(𝑤𝑁, 1o, ∅) ↔ (𝑃𝑗) = if(𝑗𝑁, 1o, ∅)))
3837imbi2d 229 . . . . 5 (𝑤 = 𝑗 → ((𝜑 → (𝑃𝑤) = if(𝑤𝑁, 1o, ∅)) ↔ (𝜑 → (𝑃𝑗) = if(𝑗𝑁, 1o, ∅))))
39 noel 3367 . . . . . . . . 9 ¬ ∅ ∈ ∅
40 simpr 109 . . . . . . . . . 10 ((𝜑𝑁 = ∅) → 𝑁 = ∅)
4140eleq2d 2209 . . . . . . . . 9 ((𝜑𝑁 = ∅) → (∅ ∈ 𝑁 ↔ ∅ ∈ ∅))
4239, 41mtbiri 664 . . . . . . . 8 ((𝜑𝑁 = ∅) → ¬ ∅ ∈ 𝑁)
4342iffalsed 3484 . . . . . . 7 ((𝜑𝑁 = ∅) → if(∅ ∈ 𝑁, 1o, ∅) = ∅)
44 nninfalllemn.0 . . . . . . . 8 (𝜑 → (𝑃𝑁) = ∅)
4544adantr 274 . . . . . . 7 ((𝜑𝑁 = ∅) → (𝑃𝑁) = ∅)
4640fveq2d 5425 . . . . . . 7 ((𝜑𝑁 = ∅) → (𝑃𝑁) = (𝑃‘∅))
4743, 45, 463eqtr2rd 2179 . . . . . 6 ((𝜑𝑁 = ∅) → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))
48 fveq2 5421 . . . . . . . . 9 (𝑥 = ∅ → (𝑃𝑥) = (𝑃‘∅))
4948eqeq1d 2148 . . . . . . . 8 (𝑥 = ∅ → ((𝑃𝑥) = 1o ↔ (𝑃‘∅) = 1o))
50 nninfalllemn.1 . . . . . . . . 9 (𝜑 → ∀𝑥𝑁 (𝑃𝑥) = 1o)
5150adantr 274 . . . . . . . 8 ((𝜑 ∧ ∅ ∈ 𝑁) → ∀𝑥𝑁 (𝑃𝑥) = 1o)
52 simpr 109 . . . . . . . 8 ((𝜑 ∧ ∅ ∈ 𝑁) → ∅ ∈ 𝑁)
5349, 51, 52rspcdva 2794 . . . . . . 7 ((𝜑 ∧ ∅ ∈ 𝑁) → (𝑃‘∅) = 1o)
5452iftrued 3481 . . . . . . 7 ((𝜑 ∧ ∅ ∈ 𝑁) → if(∅ ∈ 𝑁, 1o, ∅) = 1o)
5553, 54eqtr4d 2175 . . . . . 6 ((𝜑 ∧ ∅ ∈ 𝑁) → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))
56 0elnn 4532 . . . . . . 7 (𝑁 ∈ ω → (𝑁 = ∅ ∨ ∅ ∈ 𝑁))
5710, 56syl 14 . . . . . 6 (𝜑 → (𝑁 = ∅ ∨ ∅ ∈ 𝑁))
5847, 55, 57mpjaodan 787 . . . . 5 (𝜑 → (𝑃‘∅) = if(∅ ∈ 𝑁, 1o, ∅))
59 fveq2 5421 . . . . . . . . . . 11 (𝑥 = suc 𝑘 → (𝑃𝑥) = (𝑃‘suc 𝑘))
6059eqeq1d 2148 . . . . . . . . . 10 (𝑥 = suc 𝑘 → ((𝑃𝑥) = 1o ↔ (𝑃‘suc 𝑘) = 1o))
6150ad3antlr 484 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → ∀𝑥𝑁 (𝑃𝑥) = 1o)
62 simpr 109 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → suc 𝑘𝑁)
6360, 61, 62rspcdva 2794 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → (𝑃‘suc 𝑘) = 1o)
6462iftrued 3481 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → if(suc 𝑘𝑁, 1o, ∅) = 1o)
6563, 64eqtr4d 2175 . . . . . . . 8 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘𝑁) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
6644ad3antlr 484 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → (𝑃𝑁) = ∅)
67 simpr 109 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → suc 𝑘 = 𝑁)
6867fveq2d 5425 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → (𝑃‘suc 𝑘) = (𝑃𝑁))
6910ad2antlr 480 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → 𝑁 ∈ ω)
70 nnord 4525 . . . . . . . . . . . . 13 (𝑁 ∈ ω → Ord 𝑁)
71 ordirr 4457 . . . . . . . . . . . . 13 (Ord 𝑁 → ¬ 𝑁𝑁)
7269, 70, 713syl 17 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → ¬ 𝑁𝑁)
7372adantr 274 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → ¬ 𝑁𝑁)
7467, 73eqneltrd 2235 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → ¬ suc 𝑘𝑁)
7574iffalsed 3484 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → if(suc 𝑘𝑁, 1o, ∅) = ∅)
7666, 68, 753eqtr4d 2182 . . . . . . . 8 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ suc 𝑘 = 𝑁) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
77 suceq 4324 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘)
7877fveq2d 5425 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑃‘suc 𝑗) = (𝑃‘suc 𝑘))
79 fveq2 5421 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑃𝑗) = (𝑃𝑘))
8078, 79sseq12d 3128 . . . . . . . . . . . 12 (𝑗 = 𝑘 → ((𝑃‘suc 𝑗) ⊆ (𝑃𝑗) ↔ (𝑃‘suc 𝑘) ⊆ (𝑃𝑘)))
811ad3antlr 484 . . . . . . . . . . . . 13 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑃 ∈ ℕ)
82 fveq1 5420 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑃 → (𝑓‘suc 𝑗) = (𝑃‘suc 𝑗))
83 fveq1 5420 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑃 → (𝑓𝑗) = (𝑃𝑗))
8482, 83sseq12d 3128 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑃 → ((𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
8584ralbidv 2437 . . . . . . . . . . . . . . 15 (𝑓 = 𝑃 → (∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗) ↔ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
86 df-nninf 7007 . . . . . . . . . . . . . . 15 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑗 ∈ ω (𝑓‘suc 𝑗) ⊆ (𝑓𝑗)}
8785, 86elrab2 2843 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ ↔ (𝑃 ∈ (2o𝑚 ω) ∧ ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗)))
8887simprbi 273 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗))
8981, 88syl 14 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ∀𝑗 ∈ ω (𝑃‘suc 𝑗) ⊆ (𝑃𝑗))
90 simplll 522 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑘 ∈ ω)
9180, 89, 90rspcdva 2794 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) ⊆ (𝑃𝑘))
92 simplr 519 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃𝑘) = if(𝑘𝑁, 1o, ∅))
93 simpr 109 . . . . . . . . . . . . . . 15 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑁 ∈ suc 𝑘)
94 nnord 4525 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ω → Ord 𝑘)
95 ordtr 4300 . . . . . . . . . . . . . . . 16 (Ord 𝑘 → Tr 𝑘)
96 trsucss 4345 . . . . . . . . . . . . . . . 16 (Tr 𝑘 → (𝑁 ∈ suc 𝑘𝑁𝑘))
9794, 95, 963syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ω → (𝑁 ∈ suc 𝑘𝑁𝑘))
9890, 93, 97sylc 62 . . . . . . . . . . . . . 14 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑁𝑘)
9969adantr 274 . . . . . . . . . . . . . . 15 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → 𝑁 ∈ ω)
100 nntri1 6392 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ 𝑘 ∈ ω) → (𝑁𝑘 ↔ ¬ 𝑘𝑁))
10199, 90, 100syl2anc 408 . . . . . . . . . . . . . 14 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑁𝑘 ↔ ¬ 𝑘𝑁))
10298, 101mpbid 146 . . . . . . . . . . . . 13 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ¬ 𝑘𝑁)
103102iffalsed 3484 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → if(𝑘𝑁, 1o, ∅) = ∅)
10492, 103eqtrd 2172 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃𝑘) = ∅)
10591, 104sseqtrd 3135 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) ⊆ ∅)
106 ss0 3403 . . . . . . . . . 10 ((𝑃‘suc 𝑘) ⊆ ∅ → (𝑃‘suc 𝑘) = ∅)
107105, 106syl 14 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) = ∅)
108 ordn2lp 4460 . . . . . . . . . . . 12 (Ord 𝑁 → ¬ (𝑁 ∈ suc 𝑘 ∧ suc 𝑘𝑁))
10999, 70, 1083syl 17 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ¬ (𝑁 ∈ suc 𝑘 ∧ suc 𝑘𝑁))
110 simplr 519 . . . . . . . . . . . 12 (((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) ∧ suc 𝑘𝑁) → 𝑁 ∈ suc 𝑘)
111 simpr 109 . . . . . . . . . . . 12 (((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) ∧ suc 𝑘𝑁) → suc 𝑘𝑁)
112110, 111jca 304 . . . . . . . . . . 11 (((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) ∧ suc 𝑘𝑁) → (𝑁 ∈ suc 𝑘 ∧ suc 𝑘𝑁))
113109, 112mtand 654 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → ¬ suc 𝑘𝑁)
114113iffalsed 3484 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → if(suc 𝑘𝑁, 1o, ∅) = ∅)
115107, 114eqtr4d 2175 . . . . . . . 8 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) ∧ 𝑁 ∈ suc 𝑘) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
116 peano2 4509 . . . . . . . . . 10 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
117116ad2antrr 479 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → suc 𝑘 ∈ ω)
118 nntri3or 6389 . . . . . . . . 9 ((suc 𝑘 ∈ ω ∧ 𝑁 ∈ ω) → (suc 𝑘𝑁 ∨ suc 𝑘 = 𝑁𝑁 ∈ suc 𝑘))
119117, 69, 118syl2anc 408 . . . . . . . 8 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → (suc 𝑘𝑁 ∨ suc 𝑘 = 𝑁𝑁 ∈ suc 𝑘))
12065, 76, 115, 119mpjao3dan 1285 . . . . . . 7 (((𝑘 ∈ ω ∧ 𝜑) ∧ (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))
121120exp31 361 . . . . . 6 (𝑘 ∈ ω → (𝜑 → ((𝑃𝑘) = if(𝑘𝑁, 1o, ∅) → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))))
122121a2d 26 . . . . 5 (𝑘 ∈ ω → ((𝜑 → (𝑃𝑘) = if(𝑘𝑁, 1o, ∅)) → (𝜑 → (𝑃‘suc 𝑘) = if(suc 𝑘𝑁, 1o, ∅))))
12323, 28, 33, 38, 58, 122finds 4514 . . . 4 (𝑗 ∈ ω → (𝜑 → (𝑃𝑗) = if(𝑗𝑁, 1o, ∅)))
124123impcom 124 . . 3 ((𝜑𝑗 ∈ ω) → (𝑃𝑗) = if(𝑗𝑁, 1o, ∅))
125 simpr 109 . . . 4 ((𝜑𝑗 ∈ ω) → 𝑗 ∈ ω)
1265a1i 9 . . . . 5 ((𝜑𝑗 ∈ ω) → 1o ∈ 2o)
1277a1i 9 . . . . 5 ((𝜑𝑗 ∈ ω) → ∅ ∈ 2o)
12810adantr 274 . . . . . 6 ((𝜑𝑗 ∈ ω) → 𝑁 ∈ ω)
129 nndcel 6396 . . . . . 6 ((𝑗 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑗𝑁)
130125, 128, 129syl2anc 408 . . . . 5 ((𝜑𝑗 ∈ ω) → DECID 𝑗𝑁)
131126, 127, 130ifcldcd 3507 . . . 4 ((𝜑𝑗 ∈ ω) → if(𝑗𝑁, 1o, ∅) ∈ 2o)
132 eleq1w 2200 . . . . . 6 (𝑖 = 𝑗 → (𝑖𝑁𝑗𝑁))
133132ifbid 3493 . . . . 5 (𝑖 = 𝑗 → if(𝑖𝑁, 1o, ∅) = if(𝑗𝑁, 1o, ∅))
134133, 16fvmptg 5497 . . . 4 ((𝑗 ∈ ω ∧ if(𝑗𝑁, 1o, ∅) ∈ 2o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
135125, 131, 134syl2anc 408 . . 3 ((𝜑𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗) = if(𝑗𝑁, 1o, ∅))
136124, 135eqtr4d 2175 . 2 ((𝜑𝑗 ∈ ω) → (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑗))
1374, 18, 136eqfnfvd 5521 1 (𝜑𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819  w3o 961   = wceq 1331  wcel 1480  wral 2416  wss 3071  c0 3363  ifcif 3474  cmpt 3989  Tr wtr 4026  Ord word 4284  suc csuc 4287  ωcom 4504   Fn wfn 5118  wf 5119  cfv 5123  (class class class)co 5774  1oc1o 6306  2oc2o 6307  𝑚 cmap 6542  xnninf 7005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1o 6313  df-2o 6314  df-map 6544  df-nninf 7007
This theorem is referenced by:  nninfalllem1  13203  nninfsellemeq  13210
  Copyright terms: Public domain W3C validator