ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnntr GIF version

Theorem cnntr 12397
Description: Continuity in terms of interior. (Contributed by Jeff Hankins, 2-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnntr ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑥,𝑌

Proof of Theorem cnntr
StepHypRef Expression
1 cnf2 12377 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
213expia 1183 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌))
3 elpwi 3519 . . . . . . 7 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
43adantl 275 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥𝑌)
5 toponuni 12185 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
65ad2antlr 480 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑌 = 𝐾)
74, 6sseqtrd 3135 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥 𝐾)
8 eqid 2139 . . . . . . 7 𝐾 = 𝐾
98cnntri 12396 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))
109expcom 115 . . . . 5 (𝑥 𝐾 → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
117, 10syl 14 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
1211ralrimdva 2512 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
132, 12jcad 305 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
14 toponss 12196 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝐾) → 𝑥𝑌)
15 velpw 3517 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
1614, 15sylibr 133 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝐾) → 𝑥 ∈ 𝒫 𝑌)
1716ex 114 . . . . . . . 8 (𝐾 ∈ (TopOn‘𝑌) → (𝑥𝐾𝑥 ∈ 𝒫 𝑌))
1817ad2antlr 480 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥𝐾𝑥 ∈ 𝒫 𝑌))
1918imim1d 75 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → (𝑥𝐾 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
20 topontop 12184 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2120ad3antrrr 483 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → 𝐽 ∈ Top)
22 cnvimass 4902 . . . . . . . . . . 11 (𝐹𝑥) ⊆ dom 𝐹
23 fdm 5278 . . . . . . . . . . . . 13 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
2423ad2antlr 480 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → dom 𝐹 = 𝑋)
25 toponuni 12185 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2625ad3antrrr 483 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → 𝑋 = 𝐽)
2724, 26eqtrd 2172 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → dom 𝐹 = 𝐽)
2822, 27sseqtrid 3147 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → (𝐹𝑥) ⊆ 𝐽)
29 eqid 2139 . . . . . . . . . . 11 𝐽 = 𝐽
3029ntrss2 12293 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑥) ⊆ 𝐽) → ((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥))
3121, 28, 30syl2anc 408 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥))
32 eqss 3112 . . . . . . . . . 10 (((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥) ↔ (((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥) ∧ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
3332baib 904 . . . . . . . . 9 (((int‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥) → (((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥) ↔ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
3431, 33syl 14 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → (((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥) ↔ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
3529isopn3 12297 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝐹𝑥) ⊆ 𝐽) → ((𝐹𝑥) ∈ 𝐽 ↔ ((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥)))
3621, 28, 35syl2anc 408 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((𝐹𝑥) ∈ 𝐽 ↔ ((int‘𝐽)‘(𝐹𝑥)) = (𝐹𝑥)))
37 topontop 12184 . . . . . . . . . . . 12 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
3837ad3antlr 484 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → 𝐾 ∈ Top)
39 isopn3i 12307 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ 𝑥𝐾) → ((int‘𝐾)‘𝑥) = 𝑥)
4038, 39sylancom 416 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((int‘𝐾)‘𝑥) = 𝑥)
4140imaeq2d 4881 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → (𝐹 “ ((int‘𝐾)‘𝑥)) = (𝐹𝑥))
4241sseq1d 3126 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)) ↔ (𝐹𝑥) ⊆ ((int‘𝐽)‘(𝐹𝑥))))
4334, 36, 423bitr4rd 220 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐾) → ((𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)) ↔ (𝐹𝑥) ∈ 𝐽))
4443pm5.74da 439 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥𝐾 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) ↔ (𝑥𝐾 → (𝐹𝑥) ∈ 𝐽)))
4519, 44sylibd 148 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → (𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → (𝑥𝐾 → (𝐹𝑥) ∈ 𝐽)))
4645ralimdv2 2502 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)) → ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽))
4746imdistanda 444 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
48 iscn 12369 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
4947, 48sylibrd 168 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)))
5013, 49impbid 128 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(𝐹𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  wss 3071  𝒫 cpw 3510   cuni 3736  ccnv 4538  dom cdm 4539  cima 4542  wf 5119  cfv 5123  (class class class)co 5774  Topctop 12167  TopOnctopon 12180  intcnt 12265   Cn ccn 12357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-top 12168  df-topon 12181  df-ntr 12268  df-cn 12360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator