ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq2d GIF version

Theorem sseq2d 3037
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
sseq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
sseq2d (𝜑 → (𝐶𝐴𝐶𝐵))

Proof of Theorem sseq2d
StepHypRef Expression
1 sseq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 sseq2 3031 . 2 (𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1285  wss 2983
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-in 2989  df-ss 2996
This theorem is referenced by:  sseq12d  3038  sseqtrd  3045  onsucsssucexmid  4299  sbcrel  4473  funimass2  5029  fnco  5059  fnssresb  5063  fnimaeq0  5072  foimacnv  5196  fvelimab  5282  ssimaexg  5288  fvmptss2  5300  rdgss  6053
  Copyright terms: Public domain W3C validator