ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submul2 GIF version

Theorem submul2 8161
Description: Convert a subtraction to addition using multiplication by a negative. (Contributed by NM, 2-Feb-2007.)
Assertion
Ref Expression
submul2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 · 𝐶)) = (𝐴 + (𝐵 · -𝐶)))

Proof of Theorem submul2
StepHypRef Expression
1 mulneg2 8158 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · -𝐶) = -(𝐵 · 𝐶))
21adantl 275 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → (𝐵 · -𝐶) = -(𝐵 · 𝐶))
32oveq2d 5790 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → (𝐴 + (𝐵 · -𝐶)) = (𝐴 + -(𝐵 · 𝐶)))
4 mulcl 7747 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
5 negsub 8010 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) → (𝐴 + -(𝐵 · 𝐶)) = (𝐴 − (𝐵 · 𝐶)))
64, 5sylan2 284 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → (𝐴 + -(𝐵 · 𝐶)) = (𝐴 − (𝐵 · 𝐶)))
73, 6eqtr2d 2173 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → (𝐴 − (𝐵 · 𝐶)) = (𝐴 + (𝐵 · -𝐶)))
873impb 1177 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 · 𝐶)) = (𝐴 + (𝐵 · -𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  (class class class)co 5774  cc 7618   + caddc 7623   · cmul 7625  cmin 7933  -cneg 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-resscn 7712  ax-1cn 7713  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7935  df-neg 7936
This theorem is referenced by:  cjap  10678
  Copyright terms: Public domain W3C validator