ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txswaphmeo GIF version

Theorem txswaphmeo 12490
Description: There is a homeomorphism from 𝑋 × 𝑌 to 𝑌 × 𝑋. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
txswaphmeo ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem txswaphmeo
StepHypRef Expression
1 simpl 108 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ (TopOn‘𝑋))
2 simpr 109 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ (TopOn‘𝑌))
31, 2cnmpt2nd 12458 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
41, 2cnmpt1st 12457 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
51, 2, 3, 4cnmpt2t 12462 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐾 ×t 𝐽)))
6 opelxpi 4571 . . . . . . . . 9 ((𝑦𝑌𝑥𝑋) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
76ancoms 266 . . . . . . . 8 ((𝑥𝑋𝑦𝑌) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
87adantl 275 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑥𝑋𝑦𝑌)) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
98ralrimivva 2514 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ∀𝑥𝑋𝑦𝑌𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋))
10 eqid 2139 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)
1110fmpo 6099 . . . . . 6 (∀𝑥𝑋𝑦𝑌𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋) ↔ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋))
129, 11sylib 121 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋))
13 opelxpi 4571 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
1413ancoms 266 . . . . . . . 8 ((𝑦𝑌𝑥𝑋) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
1514adantl 275 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑦𝑌𝑥𝑋)) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
1615ralrimivva 2514 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ∀𝑦𝑌𝑥𝑋𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
17 eqid 2139 . . . . . . 7 (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)
1817fmpo 6099 . . . . . 6 (∀𝑦𝑌𝑥𝑋𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌) ↔ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌))
1916, 18sylib 121 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌))
20 txswaphmeolem 12489 . . . . . 6 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∘ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)) = ( I ↾ (𝑌 × 𝑋))
21 txswaphmeolem 12489 . . . . . 6 ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌))
22 fcof1o 5690 . . . . . 6 ((((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋) ∧ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) ∧ (((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∘ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)) = ( I ↾ (𝑌 × 𝑋)) ∧ ((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌)))) → ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)))
2320, 21, 22mpanr12 435 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)⟶(𝑌 × 𝑋) ∧ (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩):(𝑌 × 𝑋)⟶(𝑋 × 𝑌)) → ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)))
2412, 19, 23syl2anc 408 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩):(𝑋 × 𝑌)–1-1-onto→(𝑌 × 𝑋) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩)))
2524simprd 113 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩))
262, 1cnmpt2nd 12458 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋𝑥) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
272, 1cnmpt1st 12457 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋𝑦) ∈ ((𝐾 ×t 𝐽) Cn 𝐾))
282, 1, 26, 27cnmpt2t 12462 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾)))
2925, 28eqeltrd 2216 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾)))
30 ishmeo 12473 . 2 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)) ↔ ((𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐾 ×t 𝐽)) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐾 ×t 𝐽) Cn (𝐽 ×t 𝐾))))
315, 29, 30sylanbrc 413 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  cop 3530   I cid 4210   × cxp 4537  ccnv 4538  cres 4541  ccom 4543  wf 5119  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  cmpo 5776  TopOnctopon 12177   Cn ccn 12354   ×t ctx 12421  Homeochmeo 12469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-topgen 12141  df-top 12165  df-topon 12178  df-bases 12210  df-cn 12357  df-tx 12422  df-hmeo 12470
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator