HomeHome Intuitionistic Logic Explorer
Theorem List (p. 125 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12401-12500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcnnei 12401* Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux, 3-Jan-2018.)
𝑋 = 𝐽    &   𝑌 = 𝐾       ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
 
Theoremcnconst2 12402 A constant function is continuous. (Contributed by Mario Carneiro, 19-Mar-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾))
 
Theoremcnconst 12403 A constant function is continuous. (Contributed by FL, 15-Jan-2007.) (Proof shortened by Mario Carneiro, 19-Mar-2015.)
(((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐵𝑌𝐹:𝑋⟶{𝐵})) → 𝐹 ∈ (𝐽 Cn 𝐾))
 
Theoremcnrest 12404 Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.)
𝑋 = 𝐽       ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
 
Theoremcnrest2 12405 Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Hankins, 10-Jul-2009.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹𝐵𝐵𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t 𝐵))))
 
Theoremcnrest2r 12406 Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.)
(𝐾 ∈ Top → (𝐽 Cn (𝐾t 𝐵)) ⊆ (𝐽 Cn 𝐾))
 
Theoremcnptopresti 12407 One direction of cnptoprest 12408 under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 31-Mar-2023.)
(((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴𝑋𝑃𝐴𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃))
 
Theoremcnptoprest 12408 Equivalence of continuity at a point and continuity of the restricted function at a point. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 5-Apr-2023.)
𝑋 = 𝐽    &   𝑌 = 𝐾       (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹𝐴) ∈ (((𝐽t 𝐴) CnP 𝐾)‘𝑃)))
 
Theoremcnptoprest2 12409 Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
𝑋 = 𝐽    &   𝑌 = 𝐾       (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋𝐵𝐵𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))
 
Theoremcndis 12410 Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋𝑚 𝐴))
 
Theoremcnpdis 12411 If 𝐴 is an isolated point in 𝑋 (or equivalently, the singleton {𝐴} is open in 𝑋), then every function is continuous at 𝐴. (Contributed by Mario Carneiro, 9-Sep-2015.)
(((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → ((𝐽 CnP 𝐾)‘𝐴) = (𝑌𝑚 𝑋))
 
Theoremlmfpm 12412 If 𝐹 converges, then 𝐹 is a partial function. (Contributed by Mario Carneiro, 23-Dec-2013.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝐹 ∈ (𝑋pm ℂ))
 
Theoremlmfss 12413 Inclusion of a function having a limit (used to ensure the limit relation is a set, under our definition). (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝐹 ⊆ (ℂ × 𝑋))
 
Theoremlmcl 12414 Closure of a limit. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃𝑋)
 
Theoremlmss 12415 Limit on a subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
𝐾 = (𝐽t 𝑌)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑌𝑉)    &   (𝜑𝐽 ∈ Top)    &   (𝜑𝑃𝑌)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹:𝑍𝑌)       (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹(⇝𝑡𝐾)𝑃))
 
Theoremsslm 12416 A finer topology has fewer convergent sequences (but the sequences that do converge, converge to the same value). (Contributed by Mario Carneiro, 15-Sep-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (⇝𝑡𝐾) ⊆ (⇝𝑡𝐽))
 
Theoremlmres 12417 A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐹 ∈ (𝑋pm ℂ))    &   (𝜑𝑀 ∈ ℤ)       (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ↾ (ℤ𝑀))(⇝𝑡𝐽)𝑃))
 
Theoremlmff 12418* If 𝐹 converges, there is some upper integer set on which 𝐹 is a total function. (Contributed by Mario Carneiro, 31-Dec-2013.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹 ∈ dom (⇝𝑡𝐽))       (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
 
Theoremlmtopcnp 12419 The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
(𝜑𝐹(⇝𝑡𝐽)𝑃)    &   (𝜑𝐾 ∈ Top)    &   (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))       (𝜑 → (𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃))
 
Theoremlmcn 12420 The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.)
(𝜑𝐹(⇝𝑡𝐽)𝑃)    &   (𝜑𝐺 ∈ (𝐽 Cn 𝐾))       (𝜑 → (𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃))
 
7.1.8  Product topologies
 
Syntaxctx 12421 Extend class notation with the binary topological product operation.
class ×t
 
Definitiondf-tx 12422* Define the binary topological product, which is homeomorphic to the general topological product over a two element set, but is more convenient to use. (Contributed by Jeff Madsen, 2-Sep-2009.)
×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
 
Theoremtxvalex 12423 Existence of the binary topological product. If 𝑅 and 𝑆 are known to be topologies, see txtop 12429. (Contributed by Jim Kingdon, 3-Aug-2023.)
((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) ∈ V)
 
Theoremtxval 12424* Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.)
𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))       ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵))
 
Theoremtxuni2 12425* The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.)
𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))    &   𝑋 = 𝑅    &   𝑌 = 𝑆       (𝑋 × 𝑌) = 𝐵
 
Theoremtxbasex 12426* The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))       ((𝑅𝑉𝑆𝑊) → 𝐵 ∈ V)
 
Theoremtxbas 12427* The set of Cartesian products of elements from two topological bases is a basis. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))       ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → 𝐵 ∈ TopBases)
 
Theoremeltx 12428* A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
 
Theoremtxtop 12429 The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
 
Theoremtxtopi 12430 The product of two topologies is a topology. (Contributed by Jeff Madsen, 15-Jun-2010.)
𝑅 ∈ Top    &   𝑆 ∈ Top       (𝑅 ×t 𝑆) ∈ Top
 
Theoremtxtopon 12431 The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
 
Theoremtxuni 12432 The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.)
𝑋 = 𝑅    &   𝑌 = 𝑆       ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
 
Theoremtxunii 12433 The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.)
𝑅 ∈ Top    &   𝑆 ∈ Top    &   𝑋 = 𝑅    &   𝑌 = 𝑆       (𝑋 × 𝑌) = (𝑅 ×t 𝑆)
 
Theoremtxopn 12434 The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
(((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆))
 
Theoremtxss12 12435 Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.)
(((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴 ×t 𝐶) ⊆ (𝐵 ×t 𝐷))
 
Theoremtxbasval 12436 It is sufficient to consider products of the bases for the topologies in the topological product. (Contributed by Mario Carneiro, 25-Aug-2014.)
((𝑅𝑉𝑆𝑊) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (𝑅 ×t 𝑆))
 
Theoremneitx 12437 The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
𝑋 = 𝐽    &   𝑌 = 𝐾       (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)))
 
Theoremtx1cn 12438 Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
 
Theoremtx2cn 12439 Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
 
Theoremtxcnp 12440* If two functions are continuous at 𝐷, then the ordered pair of them is continuous at 𝐷 into the product topology. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑𝐿 ∈ (TopOn‘𝑍))    &   (𝜑𝐷𝑋)    &   (𝜑 → (𝑥𝑋𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷))    &   (𝜑 → (𝑥𝑋𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷))       (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷))
 
Theoremupxp 12441* Universal property of the Cartesian product considered as a categorical product in the category of sets. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
𝑃 = (1st ↾ (𝐵 × 𝐶))    &   𝑄 = (2nd ↾ (𝐵 × 𝐶))       ((𝐴𝐷𝐹:𝐴𝐵𝐺:𝐴𝐶) → ∃!(:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
 
Theoremtxcnmpt 12442* A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.)
𝑊 = 𝑈    &   𝐻 = (𝑥𝑊 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)       ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
 
Theoremuptx 12443* Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
𝑇 = (𝑅 ×t 𝑆)    &   𝑋 = 𝑅    &   𝑌 = 𝑆    &   𝑍 = (𝑋 × 𝑌)    &   𝑃 = (1st𝑍)    &   𝑄 = (2nd𝑍)       ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃! ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃) ∧ 𝐺 = (𝑄)))
 
Theoremtxcn 12444 A map into the product of two topological spaces is continuous iff both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
𝑋 = 𝑅    &   𝑌 = 𝑆    &   𝑍 = (𝑋 × 𝑌)    &   𝑊 = 𝑈    &   𝑃 = (1st𝑍)    &   𝑄 = (2nd𝑍)       ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))))
 
Theoremtxrest 12445 The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
(((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑋𝐵𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = ((𝑅t 𝐴) ×t (𝑆t 𝐵)))
 
Theoremtxdis 12446 The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵))
 
Theoremtxdis1cn 12447* A function is jointly continuous on a discrete left topology iff it is continuous as a function of its right argument, for each fixed left value. (Contributed by Mario Carneiro, 19-Sep-2015.)
(𝜑𝑋𝑉)    &   (𝜑𝐽 ∈ (TopOn‘𝑌))    &   (𝜑𝐾 ∈ Top)    &   (𝜑𝐹 Fn (𝑋 × 𝑌))    &   ((𝜑𝑥𝑋) → (𝑦𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾))       (𝜑𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾))
 
Theoremtxlm 12448* Two sequences converge iff the sequence of their ordered pairs converges. Proposition 14-2.6 of [Gleason] p. 230. (Contributed by NM, 16-Jul-2007.) (Revised by Mario Carneiro, 5-May-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑𝐹:𝑍𝑋)    &   (𝜑𝐺:𝑍𝑌)    &   𝐻 = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)       (𝜑 → ((𝐹(⇝𝑡𝐽)𝑅𝐺(⇝𝑡𝐾)𝑆) ↔ 𝐻(⇝𝑡‘(𝐽 ×t 𝐾))⟨𝑅, 𝑆⟩))
 
Theoremlmcn2 12449* The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑𝐹:𝑍𝑋)    &   (𝜑𝐺:𝑍𝑌)    &   (𝜑𝐹(⇝𝑡𝐽)𝑅)    &   (𝜑𝐺(⇝𝑡𝐾)𝑆)    &   (𝜑𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁))    &   𝐻 = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛)))       (𝜑𝐻(⇝𝑡𝑁)(𝑅𝑂𝑆))
 
7.1.9  Continuous function-builders
 
Theoremcnmptid 12450* The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))       (𝜑 → (𝑥𝑋𝑥) ∈ (𝐽 Cn 𝐽))
 
Theoremcnmptc 12451* A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑𝑃𝑌)       (𝜑 → (𝑥𝑋𝑃) ∈ (𝐽 Cn 𝐾))
 
Theoremcnmpt11 12452* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑 → (𝑦𝑌𝐵) ∈ (𝐾 Cn 𝐿))    &   (𝑦 = 𝐴𝐵 = 𝐶)       (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
 
Theoremcnmpt11f 12453* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))    &   (𝜑𝐹 ∈ (𝐾 Cn 𝐿))       (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝐽 Cn 𝐿))
 
Theoremcnmpt1t 12454* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))       (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
 
Theoremcnmpt12f 12455* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))    &   (𝜑𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀))       (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀))
 
Theoremcnmpt12 12456* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑𝐿 ∈ (TopOn‘𝑍))    &   (𝜑 → (𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀))    &   ((𝑦 = 𝐴𝑧 = 𝐵) → 𝐶 = 𝐷)       (𝜑 → (𝑥𝑋𝐷) ∈ (𝐽 Cn 𝑀))
 
Theoremcnmpt1st 12457* The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))       (𝜑 → (𝑥𝑋, 𝑦𝑌𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
 
Theoremcnmpt2nd 12458* The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))       (𝜑 → (𝑥𝑋, 𝑦𝑌𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
 
Theoremcnmpt2c 12459* A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑𝐿 ∈ (TopOn‘𝑍))    &   (𝜑𝑃𝑍)       (𝜑 → (𝑥𝑋, 𝑦𝑌𝑃) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
 
Theoremcnmpt21 12460* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))    &   (𝜑𝐿 ∈ (TopOn‘𝑍))    &   (𝜑 → (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀))    &   (𝑧 = 𝐴𝐵 = 𝐶)       (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
 
Theoremcnmpt21f 12461* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))    &   (𝜑𝐹 ∈ (𝐿 Cn 𝑀))       (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐹𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
 
Theoremcnmpt2t 12462* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))       (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝐴, 𝐵⟩) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀)))
 
Theoremcnmpt22 12463* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))    &   (𝜑𝐿 ∈ (TopOn‘𝑍))    &   (𝜑𝑀 ∈ (TopOn‘𝑊))    &   (𝜑 → (𝑧𝑍, 𝑤𝑊𝐶) ∈ ((𝐿 ×t 𝑀) Cn 𝑁))    &   ((𝑧 = 𝐴𝑤 = 𝐵) → 𝐶 = 𝐷)       (𝜑 → (𝑥𝑋, 𝑦𝑌𝐷) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
 
Theoremcnmpt22f 12464* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))    &   (𝜑𝐹 ∈ ((𝐿 ×t 𝑀) Cn 𝑁))       (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
 
Theoremcnmpt1res 12465* The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.)
𝐾 = (𝐽t 𝑌)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝑌𝑋)    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))       (𝜑 → (𝑥𝑌𝐴) ∈ (𝐾 Cn 𝐿))
 
Theoremcnmpt2res 12466* The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
𝐾 = (𝐽t 𝑌)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝑌𝑋)    &   𝑁 = (𝑀t 𝑊)    &   (𝜑𝑀 ∈ (TopOn‘𝑍))    &   (𝜑𝑊𝑍)    &   (𝜑 → (𝑥𝑋, 𝑦𝑍𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿))       (𝜑 → (𝑥𝑌, 𝑦𝑊𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿))
 
Theoremcnmptcom 12467* The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))       (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿))
 
Theoremimasnopn 12468 If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
𝑋 = 𝐽       (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (𝐽 ×t 𝐾) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ∈ 𝐾)
 
7.1.10  Homeomorphisms
 
Syntaxchmeo 12469 Extend class notation with the class of all homeomorphisms.
class Homeo
 
Definitiondf-hmeo 12470* Function returning all the homeomorphisms from topology 𝑗 to topology 𝑘. (Contributed by FL, 14-Feb-2007.)
Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
 
Theoremhmeofn 12471 The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.)
Homeo Fn (Top × Top)
 
Theoremhmeofvalg 12472* The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
 
Theoremishmeo 12473 The predicate F is a homeomorphism between topology 𝐽 and topology 𝐾. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
 
Theoremhmeocn 12474 A homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
(𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
 
Theoremhmeocnvcn 12475 The converse of a homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
(𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
 
Theoremhmeocnv 12476 The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
(𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))
 
Theoremhmeof1o2 12477 A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro, 22-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽Homeo𝐾)) → 𝐹:𝑋1-1-onto𝑌)
 
Theoremhmeof1o 12478 A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.)
𝑋 = 𝐽    &   𝑌 = 𝐾       (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto𝑌)
 
Theoremhmeoima 12479 The image of an open set by a homeomorphism is an open set. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝐽) → (𝐹𝐴) ∈ 𝐾)
 
Theoremhmeoopn 12480 Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
𝑋 = 𝐽       ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴𝐽 ↔ (𝐹𝐴) ∈ 𝐾))
 
Theoremhmeocld 12481 Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
𝑋 = 𝐽       ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐴 ∈ (Clsd‘𝐽) ↔ (𝐹𝐴) ∈ (Clsd‘𝐾)))
 
Theoremhmeontr 12482 Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015.)
𝑋 = 𝐽       ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴)))
 
Theoremhmeoimaf1o 12483* The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.)
𝐺 = (𝑥𝐽 ↦ (𝐹𝑥))       (𝐹 ∈ (𝐽Homeo𝐾) → 𝐺:𝐽1-1-onto𝐾)
 
Theoremhmeores 12484 The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
𝑋 = 𝐽       ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑌𝑋) → (𝐹𝑌) ∈ ((𝐽t 𝑌)Homeo(𝐾t (𝐹𝑌))))
 
Theoremhmeoco 12485 The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐽Homeo𝐿))
 
Theoremidhmeo 12486 The identity function is a homeomorphism. (Contributed by FL, 14-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
(𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽Homeo𝐽))
 
Theoremhmeocnvb 12487 The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
(Rel 𝐹 → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ (𝐾Homeo𝐽)))
 
Theoremtxhmeo 12488* Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝑋 = 𝐽    &   𝑌 = 𝐾    &   (𝜑𝐹 ∈ (𝐽Homeo𝐿))    &   (𝜑𝐺 ∈ (𝐾Homeo𝑀))       (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐿 ×t 𝑀)))
 
Theoremtxswaphmeolem 12489* Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.)
((𝑦𝑌, 𝑥𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌))
 
Theoremtxswaphmeo 12490* There is a homeomorphism from 𝑋 × 𝑌 to 𝑌 × 𝑋. (Contributed by Mario Carneiro, 21-Mar-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨𝑦, 𝑥⟩) ∈ ((𝐽 ×t 𝐾)Homeo(𝐾 ×t 𝐽)))
 
7.2  Metric spaces
 
7.2.1  Pseudometric spaces
 
Theorempsmetrel 12491 The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.)
Rel PsMet
 
Theoremispsmet 12492* Express the predicate "𝐷 is a pseudometric." (Contributed by Thierry Arnoux, 7-Feb-2018.)
(𝑋𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
 
Theorempsmetdmdm 12493 Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
(𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷)
 
Theorempsmetf 12494 The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.)
(𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
 
Theorempsmetcl 12495 Closure of the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 7-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
 
Theorempsmet0 12496 The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
 
Theorempsmettri2 12497 Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
 
Theorempsmetsym 12498 The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
 
Theorempsmettri 12499 Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵)))
 
Theorempsmetge0 12500 The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) (Revised by Jim Kingdon, 19-Apr-2023.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >