MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0cnALT Structured version   Visualization version   GIF version

Theorem 0cnALT 10121
Description: Alternate proof of 0cn 9888 which does not reference ax-1cn 9850. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
0cnALT 0 ∈ ℂ

Proof of Theorem 0cnALT
StepHypRef Expression
1 ax-icn 9851 . . 3 i ∈ ℂ
2 cnegex 10068 . . 3 (i ∈ ℂ → ∃𝑥 ∈ ℂ (i + 𝑥) = 0)
31, 2ax-mp 5 . 2 𝑥 ∈ ℂ (i + 𝑥) = 0
4 addcl 9874 . . . . 5 ((i ∈ ℂ ∧ 𝑥 ∈ ℂ) → (i + 𝑥) ∈ ℂ)
51, 4mpan 701 . . . 4 (𝑥 ∈ ℂ → (i + 𝑥) ∈ ℂ)
6 eleq1 2675 . . . 4 ((i + 𝑥) = 0 → ((i + 𝑥) ∈ ℂ ↔ 0 ∈ ℂ))
75, 6syl5ibcom 233 . . 3 (𝑥 ∈ ℂ → ((i + 𝑥) = 0 → 0 ∈ ℂ))
87rexlimiv 3008 . 2 (∃𝑥 ∈ ℂ (i + 𝑥) = 0 → 0 ∈ ℂ)
93, 8ax-mp 5 1 0 ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  wcel 1976  wrex 2896  (class class class)co 6527  cc 9790  0cc0 9792  ici 9794   + caddc 9795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-ltxr 9935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator