MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  al0ssb Structured version   Visualization version   GIF version

Theorem al0ssb 5212
Description: The empty set is the unique class which is a subclass of any set. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
al0ssb (∀𝑦 𝑋𝑦𝑋 = ∅)
Distinct variable group:   𝑦,𝑋

Proof of Theorem al0ssb
StepHypRef Expression
1 0ex 5211 . . 3 ∅ ∈ V
2 sseq2 3993 . . . 4 (𝑦 = ∅ → (𝑋𝑦𝑋 ⊆ ∅))
3 ss0b 4351 . . . 4 (𝑋 ⊆ ∅ ↔ 𝑋 = ∅)
42, 3syl6bb 289 . . 3 (𝑦 = ∅ → (𝑋𝑦𝑋 = ∅))
51, 4spcv 3606 . 2 (∀𝑦 𝑋𝑦𝑋 = ∅)
6 0ss 4350 . . . 4 ∅ ⊆ 𝑦
76ax-gen 1796 . . 3 𝑦∅ ⊆ 𝑦
8 sseq1 3992 . . . 4 (𝑋 = ∅ → (𝑋𝑦 ↔ ∅ ⊆ 𝑦))
98albidv 1921 . . 3 (𝑋 = ∅ → (∀𝑦 𝑋𝑦 ↔ ∀𝑦∅ ⊆ 𝑦))
107, 9mpbiri 260 . 2 (𝑋 = ∅ → ∀𝑦 𝑋𝑦)
115, 10impbii 211 1 (∀𝑦 𝑋𝑦𝑋 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wal 1535   = wceq 1537  wss 3936  c0 4291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-nul 5210
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3496  df-dif 3939  df-in 3943  df-ss 3952  df-nul 4292
This theorem is referenced by:  iota0def  43322  aiota0def  43343
  Copyright terms: Public domain W3C validator