Home | Metamath
Proof Explorer Theorem List (p. 53 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | trss 5201 | An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | ||
Theorem | trin 5202 | The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.) |
⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) | ||
Theorem | tr0 5203 | The empty set is transitive. (Contributed by NM, 16-Sep-1993.) |
⊢ Tr ∅ | ||
Theorem | trv 5204 | The universe is transitive. (Contributed by NM, 14-Sep-2003.) |
⊢ Tr V | ||
Theorem | triun 5205 | An indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.) |
⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | truni 5206* | The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.) |
⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴) | ||
Theorem | triin 5207 | An indexed intersection of a class of transitive sets is transitive. (Contributed by BJ, 3-Oct-2022.) |
⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∩ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | trint 5208* | The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by BJ, 3-Oct-2022.) |
⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴) | ||
Theorem | trintss 5209 | Any nonempty transitive class includes its intersection. Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the nonemptiness hypothesis). (Contributed by Scott Fenton, 3-Mar-2011.) (Proof shortened by Andrew Salmon, 14-Nov-2011.) |
⊢ ((Tr 𝐴 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ 𝐴) | ||
Axiom | ax-rep 5210* |
Axiom of Replacement. An axiom scheme of Zermelo-Fraenkel set theory.
Axiom 5 of [TakeutiZaring] p. 19.
It tells us that the image of any set
under a function is also a set (see the variant funimaex 6529). Although
𝜑 may be any wff whatsoever, this
axiom is useful (i.e. its
antecedent is satisfied) when we are given some function and 𝜑
encodes the predicate "the value of the function at 𝑤 is
𝑧".
Thus, 𝜑 will ordinarily have free variables
𝑤
and 𝑧- think
of it informally as 𝜑(𝑤, 𝑧). We prefix 𝜑 with the
quantifier ∀𝑦 in order to "protect" the
axiom from any 𝜑
containing 𝑦, thus allowing us to eliminate any
restrictions on
𝜑. Another common variant is derived
as axrep5 5216, where you can
find some further remarks. A slightly more compact version is shown as
axrep2 5213. A quite different variant is zfrep6 7806, which if used in
place of ax-rep 5210 would also require that the Separation Scheme
axsep 5223
be stated as a separate axiom.
There is a very strong generalization of Replacement that doesn't demand function-like behavior of 𝜑. Two versions of this generalization are called the Collection Principle cp 9658 and the Boundedness Axiom bnd 9659. Many developments of set theory distinguish the uses of Replacement from uses of the weaker axioms of Separation axsep 5223, Null Set axnul 5230, and Pairing axpr 5352, all of which we derive from Replacement. In order to make it easier to identify the uses of those redundant axioms, we restate them as Axioms ax-sep 5224, ax-nul 5231, and ax-pr 5353 below the theorems that prove them. (Contributed by NM, 23-Dec-1993.) |
⊢ (∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) | ||
Theorem | axrep1 5211* | The version of the Axiom of Replacement used in the Metamath Solitaire applet https://us.metamath.org/mmsolitaire/mms.html. Equivalence is shown via the path ax-rep 5210 → axrep1 5211 → axrep2 5213 → axrepnd 10359 → zfcndrep 10379 = ax-rep 5210. (Contributed by NM, 19-Nov-2005.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) Remove dependency on ax-13 2373. (Revised by BJ, 31-May-2019.) |
⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ 𝜑))) | ||
Theorem | axreplem 5212* | Lemma for axrep2 5213 and axrep3 5214. (Contributed by BJ, 6-Aug-2022.) |
⊢ (𝑥 = 𝑦 → (∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑥 ∧ 𝜒))) ↔ ∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑦 ∧ 𝜒))))) | ||
Theorem | axrep2 5213* | Axiom of Replacement expressed with the fewest number of different variables and without any restrictions on 𝜑. (Contributed by NM, 15-Aug-2003.) Remove dependency on ax-13 2373. (Revised by BJ, 31-May-2019.) |
⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | ||
Theorem | axrep3 5214* | Axiom of Replacement slightly strengthened from axrep2 5213; 𝑤 may occur free in 𝜑. (Contributed by NM, 2-Jan-1997.) Remove dependency on ax-13 2373. (Revised by BJ, 31-May-2019.) |
⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) | ||
Theorem | axrep4 5215* | A more traditional version of the Axiom of Replacement. (Contributed by NM, 14-Aug-1994.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ (∀𝑥∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) | ||
Theorem | axrep5 5216* | Axiom of Replacement (similar to Axiom Rep of [BellMachover] p. 463). The antecedent tells us 𝜑 is analogous to a "function" from 𝑥 to 𝑦 (although it is not really a function since it is a wff and not a class). In the consequent we postulate the existence of a set 𝑧 that corresponds to the "image" of 𝜑 restricted to some other set 𝑤. The hypothesis says 𝑧 must not be free in 𝜑. (Contributed by NM, 26-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ (∀𝑥(𝑥 ∈ 𝑤 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) | ||
Theorem | axrep6 5217* | A condensed form of ax-rep 5210. (Contributed by SN, 18-Sep-2023.) |
⊢ (∀𝑤∃*𝑧𝜑 → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑)) | ||
Theorem | axrep6g 5218* | axrep6 5217 in class notation. It is equivalent to both ax-rep 5210 and abrexexg 7812, providing a direct link between the two. (Contributed by SN, 11-Dec-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥∃*𝑦𝜓) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓} ∈ V) | ||
Theorem | zfrepclf 5219* | An inference based on the Axiom of Replacement. Typically, 𝜑 defines a function from 𝑥 to 𝑦. (Contributed by NM, 26-Nov-1995.) |
⊢ Ⅎ𝑥𝐴 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 ∈ 𝐴 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) ⇒ ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Theorem | zfrep3cl 5220* | An inference based on the Axiom of Replacement. Typically, 𝜑 defines a function from 𝑥 to 𝑦. (Contributed by NM, 26-Nov-1995.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 ∈ 𝐴 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) ⇒ ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Theorem | zfrep4 5221* | A version of Replacement using class abstractions. (Contributed by NM, 26-Nov-1995.) |
⊢ {𝑥 ∣ 𝜑} ∈ V & ⊢ (𝜑 → ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) ⇒ ⊢ {𝑦 ∣ ∃𝑥(𝜑 ∧ 𝜓)} ∈ V | ||
Theorem | axsepgfromrep 5222* | A more general version axsepg 5225 of the axiom scheme of separation ax-sep 5224 derived from the axiom scheme of replacement ax-rep 5210 (and first-order logic). The extra generality consists in the absence of a disjoint variable condition on 𝑧, 𝜑 (that is, variable 𝑧 may occur in formula 𝜑). See linked statements for more information. (Contributed by NM, 11-Sep-2006.) Remove dependencies on ax-9 2117 to ax-13 2373. (Revised by SN, 25-Sep-2023.) Use ax-sep 5224 instead (or axsepg 5225 if the extra generality is needed). (New usage is discouraged.) |
⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||
Theorem | axsep 5223* | Axiom scheme of separation ax-sep 5224 derived from the axiom scheme of replacement ax-rep 5210. The statement is identical to that of ax-sep 5224, and therefore shows that ax-sep 5224 is redundant when ax-rep 5210 is allowed. See ax-sep 5224 for more information. (Contributed by NM, 11-Sep-2006.) Use ax-sep 5224 instead. (New usage is discouraged.) |
⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||
Axiom | ax-sep 5224* |
Axiom scheme of separation. This is an axiom scheme of Zermelo and
Zermelo-Fraenkel set theories.
It was derived as axsep 5223 above and is therefore redundant in ZF set theory, which contains ax-rep 5210 as an axiom (contrary to Zermelo set theory). We state it as a separate axiom here so that some of its uses can be identified more easily. Some textbooks present the axiom scheme of separation as a separate axiom scheme in order to show that much of set theory can be derived without the stronger axiom scheme of replacement (which is not part of Zermelo set theory). The axiom scheme of separation is a weak form of Frege's axiom scheme of (unrestricted) comprehension, in that it conditions it with the condition 𝑥 ∈ 𝑧, so that it asserts the existence of a collection only if it is smaller than some other collection 𝑧 that already exists. This prevents Russell's paradox ru 3716. In some texts, this scheme is called "Aussonderung" (German for "separation") or "Subset Axiom". The variable 𝑥 can occur in the formula 𝜑, which in textbooks is often written 𝜑(𝑥). To specify this in the Metamath language, we omit the distinct variable condition ($d) that 𝑥 not occur in 𝜑. For a version using a class variable, see zfauscl 5226, which requires the axiom of extensionality as well as the axiom scheme of separation for its derivation. If we omit the requirement that 𝑦 not occur in 𝜑, we can derive a contradiction, as notzfaus 5286 shows (showing the necessity of that condition in zfauscl 5226). Scheme Sep of [BellMachover] p. 463. (Contributed by NM, 11-Sep-2006.) |
⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||
Theorem | axsepg 5225* | A more general version of the axiom scheme of separation ax-sep 5224, where variable 𝑧 can also occur (in addition to 𝑥) in formula 𝜑, which can therefore be thought of as 𝜑(𝑥, 𝑧). This version is derived from the more restrictive ax-sep 5224 with no additional set theory axioms. Note that it was also derived from ax-rep 5210 but without ax-sep 5224 as axsepgfromrep 5222. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) Remove dependency on ax-12 2172 and ax-13 2373 and shorten proof. (Revised by BJ, 6-Oct-2019.) |
⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||
Theorem | zfauscl 5226* |
Separation Scheme (Aussonderung) using a class variable. To derive this
from ax-sep 5224, we invoke the Axiom of Extensionality
(indirectly via
vtocl 3499), which is needed for the justification of
class variable
notation.
If we omit the requirement that 𝑦 not occur in 𝜑, we can derive a contradiction, as notzfaus 5286 shows. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Theorem | bm1.3ii 5227* | Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep 5224. Similar to Theorem 1.3(ii) of [BellMachover] p. 463. (Contributed by NM, 21-Jun-1993.) |
⊢ ∃𝑥∀𝑦(𝜑 → 𝑦 ∈ 𝑥) ⇒ ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝜑) | ||
Theorem | ax6vsep 5228* | Derive ax6v 1973 (a weakened version of ax-6 1972 where 𝑥 and 𝑦 must be distinct), from Separation ax-sep 5224 and Extensionality ax-ext 2710. See ax6 2385 for the derivation of ax-6 1972 from ax6v 1973. (Contributed by NM, 12-Nov-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | ||
Theorem | axnulALT 5229* | Alternate proof of axnul 5230, proved from propositional calculus, ax-gen 1798, ax-4 1812, sp 2177, and ax-rep 5210. To check this, replace sp 2177 with the obsolete axiom ax-c5 36904 in the proof of axnulALT 5229 and type the Metamath program "MM> SHOW TRACE_BACK axnulALT / AXIOMS" command. (Contributed by Jeff Hoffman, 3-Feb-2008.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
Theorem | axnul 5230* |
The Null Set Axiom of ZF set theory: there exists a set with no
elements. Axiom of Empty Set of [Enderton] p. 18. In some textbooks,
this is presented as a separate axiom; here we show it can be derived
from Separation ax-sep 5224. This version of the Null Set Axiom tells us
that at least one empty set exists, but does not tell us that it is
unique - we need the Axiom of Extensionality to do that (see nulmo 2715).
This proof, suggested by Jeff Hoffman, uses only ax-4 1812 and ax-gen 1798 from predicate calculus, which are valid in "free logic" i.e. logic holding in an empty domain (see Axiom A5 and Rule R2 of [LeBlanc] p. 277). Thus, our ax-sep 5224 implies the existence of at least one set. Note that Kunen's version of ax-sep 5224 (Axiom 3 of [Kunen] p. 11) does not imply the existence of a set because his is universally closed, i.e., prefixed with universal quantifiers to eliminate all free variables. His existence is provided by a separate axiom stating ∃𝑥𝑥 = 𝑥 (Axiom 0 of [Kunen] p. 10). See axnulALT 5229 for a proof directly from ax-rep 5210. This theorem should not be referenced by any proof. Instead, use ax-nul 5231 below so that the uses of the Null Set Axiom can be more easily identified. (Contributed by Jeff Hoffman, 3-Feb-2008.) (Revised by NM, 4-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
Axiom | ax-nul 5231* | The Null Set Axiom of ZF set theory. It was derived as axnul 5230 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 7-Aug-2003.) |
⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
Theorem | 0ex 5232 | The Null Set Axiom of ZF set theory: the empty set exists. Corollary 5.16 of [TakeutiZaring] p. 20. For the unabbreviated version, see ax-nul 5231. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ ∅ ∈ V | ||
Theorem | al0ssb 5233* | The empty set is the unique class which is a subclass of any set. (Contributed by AV, 24-Aug-2022.) |
⊢ (∀𝑦 𝑋 ⊆ 𝑦 ↔ 𝑋 = ∅) | ||
Theorem | sseliALT 5234 | Alternate proof of sseli 3918 illustrating the use of the weak deduction theorem to prove it from the inference sselii 3919. (Contributed by NM, 24-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) | ||
Theorem | csbexg 5235 | The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 17-Aug-2018.) |
⊢ (∀𝑥 𝐵 ∈ 𝑊 → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) | ||
Theorem | csbex 5236 | The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Revised by NM, 17-Aug-2018.) |
⊢ 𝐵 ∈ V ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V | ||
Theorem | unisn2 5237 | A version of unisn 4862 without the 𝐴 ∈ V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006.) |
⊢ ∪ {𝐴} ∈ {∅, 𝐴} | ||
Theorem | nalset 5238* | No set contains all sets. Theorem 41 of [Suppes] p. 30. (Contributed by NM, 23-Aug-1993.) Remove use of ax-12 2172 and ax-13 2373. (Revised by BJ, 31-May-2019.) |
⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | ||
Theorem | vnex 5239 | The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.) |
⊢ ¬ ∃𝑥 𝑥 = V | ||
Theorem | vprc 5240 | The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
⊢ ¬ V ∈ V | ||
Theorem | nvel 5241 | The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.) |
⊢ ¬ V ∈ 𝐴 | ||
Theorem | inex1 5242 | Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∩ 𝐵) ∈ V | ||
Theorem | inex2 5243 | Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∩ 𝐴) ∈ V | ||
Theorem | inex1g 5244 | Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | ||
Theorem | inex2g 5245 | Sufficient condition for an intersection to be a set. Commuted form of inex1g 5244. (Contributed by Peter Mazsa, 19-Dec-2018.) |
⊢ (𝐴 ∈ 𝑉 → (𝐵 ∩ 𝐴) ∈ V) | ||
Theorem | ssex 5246 | The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 5224 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) | ||
Theorem | ssexi 5247 | The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
⊢ 𝐵 ∈ V & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 ∈ V | ||
Theorem | ssexg 5248 | The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | ||
Theorem | ssexd 5249 | A subclass of a set is a set. Deduction form of ssexg 5248. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ V) | ||
Theorem | prcssprc 5250 | The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V) → 𝐵 ∉ V) | ||
Theorem | sselpwd 5251 | Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) | ||
Theorem | difexg 5252 | Existence of a difference. (Contributed by NM, 26-May-1998.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | ||
Theorem | difexi 5253 | Existence of a difference, inference version of difexg 5252. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∖ 𝐵) ∈ V | ||
Theorem | difexd 5254 | Existence of a difference. (Contributed by SN, 16-Jul-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) | ||
Theorem | zfausab 5255* | Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V | ||
Theorem | rabexg 5256* | Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
Theorem | rabex 5257* | Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 19-Jul-1996.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V | ||
Theorem | rabexd 5258* | Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5259. (Contributed by AV, 16-Jul-2019.) |
⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
Theorem | rabex2 5259* | Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} & ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐵 ∈ V | ||
Theorem | rab2ex 5260* | A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
⊢ 𝐵 = {𝑦 ∈ 𝐴 ∣ 𝜓} & ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} ∈ V | ||
Theorem | elssabg 5261* | Membership in a class abstraction involving a subset. Unlike elabg 3608, 𝐴 does not have to be a set. (Contributed by NM, 29-Aug-2006.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝜑)} ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) | ||
Theorem | intex 5262 | The intersection of a nonempty class exists. Exercise 5 of [TakeutiZaring] p. 44 and its converse. (Contributed by NM, 13-Aug-2002.) |
⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) | ||
Theorem | intnex 5263 | If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.) |
⊢ (¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V) | ||
Theorem | intexab 5264 | The intersection of a nonempty class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) | ||
Theorem | intexrab 5265 | The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
Theorem | iinexg 5266* | The existence of a class intersection. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by FL, 19-Sep-2011.) |
⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
Theorem | intabs 5267* | Absorption of a redundant conjunct in the intersection of a class abstraction. (Contributed by NM, 3-Jul-2005.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = ∩ {𝑦 ∣ 𝜓} → (𝜑 ↔ 𝜒)) & ⊢ (∩ {𝑦 ∣ 𝜓} ⊆ 𝐴 ∧ 𝜒) ⇒ ⊢ ∩ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑} | ||
Theorem | inuni 5268* | The intersection of a union ∪ 𝐴 with a class 𝐵 is equal to the union of the intersections of each element of 𝐴 with 𝐵. (Contributed by FL, 24-Mar-2007.) |
⊢ (∪ 𝐴 ∩ 𝐵) = ∪ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 ∩ 𝐵)} | ||
Theorem | elpw2g 5269 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | elpw2 5270 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) | ||
Theorem | elpwi2 5271 | Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
⊢ 𝐵 ∈ 𝑉 & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 ∈ 𝒫 𝐵 | ||
Theorem | elpwi2OLD 5272 | Obsolete version of elpwi2 5271 as of 26-May-2024. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐵 ∈ 𝑉 & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 ∈ 𝒫 𝐵 | ||
Theorem | pwnss 5273 | The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝐴 ⊆ 𝐴) | ||
Theorem | pwne 5274 | No set equals its power set. The sethood antecedent is necessary; compare pwv 4837. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) | ||
Theorem | difelpw 5275 | A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐴) | ||
Theorem | rabelpw 5276* | A restricted class abstraction is an element of the power set of its restricting set. (Contributed by AV, 9-Oct-2023.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ 𝒫 𝐴) | ||
Theorem | class2set 5277* | Construct, from any class 𝐴, a set equal to it when the class exists and equal to the empty set when the class is proper. This theorem shows that the constructed set always exists. (Contributed by NM, 16-Oct-2003.) |
⊢ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V | ||
Theorem | class2seteq 5278* | Equality theorem based on class2set 5277. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) | ||
Theorem | 0elpw 5279 | Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
⊢ ∅ ∈ 𝒫 𝐴 | ||
Theorem | pwne0 5280 | A power class is never empty. (Contributed by NM, 3-Sep-2018.) |
⊢ 𝒫 𝐴 ≠ ∅ | ||
Theorem | 0nep0 5281 | The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
⊢ ∅ ≠ {∅} | ||
Theorem | 0inp0 5282 | Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) | ||
Theorem | unidif0 5283 | The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.) |
⊢ ∪ (𝐴 ∖ {∅}) = ∪ 𝐴 | ||
Theorem | eqsnuniex 5284 | If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024.) |
⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) | ||
Theorem | iin0 5285* | An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005.) |
⊢ (𝐴 ≠ ∅ ↔ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) | ||
Theorem | notzfaus 5286* | In the Separation Scheme zfauscl 5226, we require that 𝑦 not occur in 𝜑 (which can be generalized to "not be free in"). Here we show special cases of 𝐴 and 𝜑 that result in a contradiction if that requirement is not met. (Contributed by NM, 8-Feb-2006.) (Proof shortened by BJ, 18-Nov-2023.) |
⊢ 𝐴 = {∅} & ⊢ (𝜑 ↔ ¬ 𝑥 ∈ 𝑦) ⇒ ⊢ ¬ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Theorem | intv 5287 | The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.) |
⊢ ∩ V = ∅ | ||
Theorem | axpweq 5288* | Two equivalent ways to express the Power Set Axiom. Note that ax-pow 5289 is not used by the proof. When ax-pow 5289 is assumed and 𝐴 is a set, both sides of the biconditional hold. In ZF, both sides hold if and only if 𝐴 is a set (see pwexr 7624). (Contributed by NM, 22-Jun-2009.) |
⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) | ||
Axiom | ax-pow 5289* | Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory. It states that a set 𝑦 exists that includes the power set of a given set 𝑥 i.e. contains every subset of 𝑥. The variant axpow2 5291 uses explicit subset notation. A version using class notation is pwex 5304. (Contributed by NM, 21-Jun-1993.) |
⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
Theorem | zfpow 5290* | Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) |
⊢ ∃𝑥∀𝑦(∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
Theorem | axpow2 5291* | A variant of the Axiom of Power Sets ax-pow 5289 using subset notation. Problem in [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | ||
Theorem | axpow3 5292* | A variant of the Axiom of Power Sets ax-pow 5289. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ 𝑦) | ||
Theorem | elALT2 5293* | Alternate proof of el 5358 using ax-9 2117 and ax-pow 5289 instead of ax-pr 5353. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∃𝑦 𝑥 ∈ 𝑦 | ||
Theorem | dtruALT2 5294* | Alternate proof of dtru 5360 using ax-pow 5289 instead of ax-pr 5353. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2373. (Revised by Gino Giotto, 5-Sep-2023.) Avoid ax-12 2172. (Revised by Rohan Ridenour, 9-Oct-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
Theorem | dtrucor 5295* | Corollary of dtru 5360. This example illustrates the danger of blindly trusting the standard Deduction Theorem without accounting for free variables: the theorem form of this deduction is not valid, as shown by dtrucor2 5296. (Contributed by NM, 27-Jun-2002.) |
⊢ 𝑥 = 𝑦 ⇒ ⊢ 𝑥 ≠ 𝑦 | ||
Theorem | dtrucor2 5296 | The theorem form of the deduction dtrucor 5295 leads to a contradiction, as mentioned in the "Wrong!" example at mmdeduction.html#bad 5295. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by NM, 20-Oct-2007.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → 𝑥 ≠ 𝑦) ⇒ ⊢ (𝜑 ∧ ¬ 𝜑) | ||
Theorem | dvdemo1 5297* |
Demonstration of a theorem that requires the setvar variables 𝑥 and
𝑦 to be disjoint (but without any other
disjointness conditions, and
in particular, none on 𝑧).
That theorem bundles the theorems (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) with 𝑥, 𝑦, 𝑧 disjoint), often called its "principal instance", and the two "degenerate instances" (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑥 ∈ 𝑥) with 𝑥, 𝑦 disjoint) and (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑦 ∈ 𝑥) with 𝑥, 𝑦 disjoint). Compare with dvdemo2 5298, which has the same principal instance and one common degenerate instance but crucially differs in the other degenerate instance. See https://us.metamath.org/mpeuni/mmset.html#distinct 5298 for details on the "disjoint variable" mechanism. (The verb "bundle" to express this phenomenon was introduced by Raph Levien.) Note that dvdemo1 5297 is partially bundled, in that the pairs of setvar variables 𝑥, 𝑧 and 𝑦, 𝑧 need not be disjoint, and in spite of that, its proof does not require ax-11 2155 nor ax-13 2373. (Contributed by NM, 1-Dec-2006.) (Revised by BJ, 13-Jan-2024.) |
⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) | ||
Theorem | dvdemo2 5298* |
Demonstration of a theorem that requires the setvar variables 𝑥 and
𝑧 to be disjoint (but without any other
disjointness conditions, and
in particular, none on 𝑦).
That theorem bundles the theorems (⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) with 𝑥, 𝑦, 𝑧 disjoint), often called its "principal instance", and the two "degenerate instances" (⊢ ∃𝑥(𝑥 = 𝑥 → 𝑧 ∈ 𝑥) with 𝑥, 𝑧 disjoint) and (⊢ ∃𝑥(𝑥 = 𝑧 → 𝑧 ∈ 𝑥) with 𝑥, 𝑧 disjoint). Compare with dvdemo1 5297, which has the same principal instance and one common degenerate instance but crucially differs in the other degenerate instance. See https://us.metamath.org/mpeuni/mmset.html#distinct 5297 for details on the "disjoint variable" mechanism. Note that dvdemo2 5298 is partially bundled, in that the pairs of setvar variables 𝑥, 𝑦 and 𝑦, 𝑧 need not be disjoint, and in spite of that, its proof does not require any of the auxiliary axioms ax-10 2138, ax-11 2155, ax-12 2172, ax-13 2373. (Contributed by NM, 1-Dec-2006.) (Revised by BJ, 13-Jan-2024.) |
⊢ ∃𝑥(𝑥 = 𝑦 → 𝑧 ∈ 𝑥) | ||
Theorem | nfnid 5299 | A setvar variable is not free from itself. This theorem is not true in a one-element domain, as illustrated by the use of dtruALT2 5294 in its proof. (Contributed by Mario Carneiro, 8-Oct-2016.) |
⊢ ¬ Ⅎ𝑥𝑥 | ||
Theorem | nfcvb 5300 | The "distinctor" expression ¬ ∀𝑥𝑥 = 𝑦, stating that 𝑥 and 𝑦 are not the same variable, can be written in terms of Ⅎ in the obvious way. This theorem is not true in a one-element domain, because then Ⅎ𝑥𝑦 and ∀𝑥𝑥 = 𝑦 will both be true. (Contributed by Mario Carneiro, 8-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2373. (New usage is discouraged.) |
⊢ (Ⅎ𝑥𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |