| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > avril1 | Structured version Visualization version GIF version | ||
| Description: Poisson d'Avril's
Theorem. This theorem is noted for its
Selbstdokumentieren property, which means, literally,
"self-documenting" and recalls the principle of quidquid
german dictum
sit, altum viditur, often used in set theory. Starting with the
seemingly simple yet profound fact that any object 𝑥 equals
itself
(proved by Tarski in 1965; see Lemma 6 of [Tarski] p. 68), we
demonstrate that the power set of the real numbers, as a relation on the
value of the imaginary unit, does not conjoin with an empty relation on
the product of the additive and multiplicative identity elements,
leading to this startling conclusion that has left even seasoned
professional mathematicians scratching their heads. (Contributed by
Prof. Loof Lirpa, 1-Apr-2005.) (Proof modification is discouraged.)
(New usage is discouraged.)
A reply to skeptics can be found at mmnotes.txt, under the 1-Apr-2006 entry. |
| Ref | Expression |
|---|---|
| avril1 | ⊢ ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 2012 | . . . . . . . 8 ⊢ 𝑥 = 𝑥 | |
| 2 | dfnul2 4295 | . . . . . . . . . 10 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | |
| 3 | 2 | eqabri 2871 | . . . . . . . . 9 ⊢ (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥) |
| 4 | 3 | con2bii 357 | . . . . . . . 8 ⊢ (𝑥 = 𝑥 ↔ ¬ 𝑥 ∈ ∅) |
| 5 | 1, 4 | mpbi 230 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ |
| 6 | eleq1 2816 | . . . . . . 7 ⊢ (𝑥 = 〈𝐹, 0〉 → (𝑥 ∈ ∅ ↔ 〈𝐹, 0〉 ∈ ∅)) | |
| 7 | 5, 6 | mtbii 326 | . . . . . 6 ⊢ (𝑥 = 〈𝐹, 0〉 → ¬ 〈𝐹, 0〉 ∈ ∅) |
| 8 | 7 | vtocleg 3516 | . . . . 5 ⊢ (〈𝐹, 0〉 ∈ V → ¬ 〈𝐹, 0〉 ∈ ∅) |
| 9 | elex 3465 | . . . . . 6 ⊢ (〈𝐹, 0〉 ∈ ∅ → 〈𝐹, 0〉 ∈ V) | |
| 10 | 9 | con3i 154 | . . . . 5 ⊢ (¬ 〈𝐹, 0〉 ∈ V → ¬ 〈𝐹, 0〉 ∈ ∅) |
| 11 | 8, 10 | pm2.61i 182 | . . . 4 ⊢ ¬ 〈𝐹, 0〉 ∈ ∅ |
| 12 | df-br 5103 | . . . . 5 ⊢ (𝐹∅(0 · 1) ↔ 〈𝐹, (0 · 1)〉 ∈ ∅) | |
| 13 | 0cn 11142 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
| 14 | 13 | mulridi 11154 | . . . . . . 7 ⊢ (0 · 1) = 0 |
| 15 | 14 | opeq2i 4837 | . . . . . 6 ⊢ 〈𝐹, (0 · 1)〉 = 〈𝐹, 0〉 |
| 16 | 15 | eleq1i 2819 | . . . . 5 ⊢ (〈𝐹, (0 · 1)〉 ∈ ∅ ↔ 〈𝐹, 0〉 ∈ ∅) |
| 17 | 12, 16 | bitri 275 | . . . 4 ⊢ (𝐹∅(0 · 1) ↔ 〈𝐹, 0〉 ∈ ∅) |
| 18 | 11, 17 | mtbir 323 | . . 3 ⊢ ¬ 𝐹∅(0 · 1) |
| 19 | 18 | intnan 486 | . 2 ⊢ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1)) |
| 20 | df-i 11053 | . . . . . . . 8 ⊢ i = 〈0R, 1R〉 | |
| 21 | 20 | fveq1i 6841 | . . . . . . 7 ⊢ (i‘1) = (〈0R, 1R〉‘1) |
| 22 | df-fv 6507 | . . . . . . 7 ⊢ (〈0R, 1R〉‘1) = (℩𝑦1〈0R, 1R〉𝑦) | |
| 23 | 21, 22 | eqtri 2752 | . . . . . 6 ⊢ (i‘1) = (℩𝑦1〈0R, 1R〉𝑦) |
| 24 | 23 | breq2i 5110 | . . . . 5 ⊢ (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 ℝ(℩𝑦1〈0R, 1R〉𝑦)) |
| 25 | df-r 11054 | . . . . . . 7 ⊢ ℝ = (R × {0R}) | |
| 26 | sseq2 3970 | . . . . . . . . 9 ⊢ (ℝ = (R × {0R}) → (𝑧 ⊆ ℝ ↔ 𝑧 ⊆ (R × {0R}))) | |
| 27 | 26 | abbidv 2795 | . . . . . . . 8 ⊢ (ℝ = (R × {0R}) → {𝑧 ∣ 𝑧 ⊆ ℝ} = {𝑧 ∣ 𝑧 ⊆ (R × {0R})}) |
| 28 | df-pw 4561 | . . . . . . . 8 ⊢ 𝒫 ℝ = {𝑧 ∣ 𝑧 ⊆ ℝ} | |
| 29 | df-pw 4561 | . . . . . . . 8 ⊢ 𝒫 (R × {0R}) = {𝑧 ∣ 𝑧 ⊆ (R × {0R})} | |
| 30 | 27, 28, 29 | 3eqtr4g 2789 | . . . . . . 7 ⊢ (ℝ = (R × {0R}) → 𝒫 ℝ = 𝒫 (R × {0R})) |
| 31 | 25, 30 | ax-mp 5 | . . . . . 6 ⊢ 𝒫 ℝ = 𝒫 (R × {0R}) |
| 32 | 31 | breqi 5108 | . . . . 5 ⊢ (𝐴𝒫 ℝ(℩𝑦1〈0R, 1R〉𝑦) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦)) |
| 33 | 24, 32 | bitri 275 | . . . 4 ⊢ (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦)) |
| 34 | 33 | anbi1i 624 | . . 3 ⊢ ((𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1))) |
| 35 | 34 | notbii 320 | . 2 ⊢ (¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1))) |
| 36 | 19, 35 | mpbir 231 | 1 ⊢ ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 𝒫 cpw 4559 {csn 4585 〈cop 4591 class class class wbr 5102 × cxp 5629 ℩cio 6450 ‘cfv 6499 (class class class)co 7369 Rcnr 10794 0Rc0r 10795 1Rc1r 10796 ℝcr 11043 0cc0 11044 1c1 11045 ici 11046 · cmul 11049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-mulcom 11108 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1rid 11114 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-i 11053 df-r 11054 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |